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Abstract 

A p-type ferromagnetic semiconductor (Ga1-x,Fex)Sb 

(x = 3.9 – 20%) has been grown by low-temperature 

molecular beam epitaxy (MBE). Crystal structure ana-

lyses by scanning transmission electron microscopy 

(STEM) and transmission electron diffraction (TED) 

indicate that the (Ga1-x,Fex)Sb thin films maintain the 

zinc-blende crystal structure up to x = 20%. The intrin-

sic ferromagnetism was confirmed by magnetic circular 

dichroism (MCD) spectroscopy and anomalous Hall 

effect (AHE) measurements. The Curie temperature TC 

of (Ga1-x,Fex)Sb depends on x and the hole concentra-

tion as in the case of other ferromagnetic semiconduc-

tors with hole-induced ferromagnetism. The highest TC 

reaches 230 K at x = 20%, which is the highest value so 

far reported in III-V ferromagnetic semiconductors.  

 

1. Introduction 

Development of new ferromagnetic semiconductors 

(FMSs) is an important issue in the emerging field of 

“semiconductor spintronics”. Although Mn-doped III-V 

FMSs, such as (In,Mn)As and (Ga,Mn)As, have been in-

tensively studied, the maximum Curie temperature TC of 

(Ga,Mn)As (200 K) and (In,Mn)As (90 K) are still much 

lower than room temperature [1,2]. Furthermore, the origin 

of ferromagnetism of Mn-based FMSs is under debate [3]. 

Recently, a new Fe-based n-type III-V FMS (In,Fe)As was 

successfully grown and exhibited surprisingly large s-d 

exchange interaction [4,5]. Furthermore, very recently, we 

have successfully grown a new p-type Fe-doped FMS 

(Ga,Fe)Sb. Notably, TC of (Ga1-x,Fex)Sb reaches 140 K at x 

= 13.7%, which is the highest TC in narrow-gap III-V FMSs 

[6]. The successful growth of n-type (In,Fe)As and p-type 

(Ga,Fe)Sb FMSs opens a new opportunity to fabricate 

all-FMS spintronic devices. 

In this paper, we systematically investigate the crystal 

structure, magneto-optical properties, magnetization, and 

magneto-transport properties of (Ga1-x,Fex)Sb (x = 3.9 – 

20%). The highest TC observed in (Ga,Fe)Sb reaches 230 K 

for the sample with x = 20%, indicating that Fe-based 

FMSs are very promising for realization of high-TC FMSs. 

 

2. Crystal structure analysis  

The (Ga1-x,Fex)Sb samples with various Fe concentra-

tion x = 3.9 – 20% and thicknesses d = 30 – 100nm were 

grown on GaAs substrate at 250
o
C by LT-MBE. The stu-

died (Ga1-x,Fex)Sb samples are listed in Table I. Reflection 

high-energy electron diffraction (RHEED) patterns of the 

(Ga,Fe)Sb layers during the MBE growth are streaky with 

surface reconstruction of (1×3), which is similar to that of 

GaSb grown at high temperature. This indicates that 

(Ga,Fe)Sb layers preserve the zinc-blende-type crystal 

structure and have an atomically smooth surface. Figures 

1(a) and 1(b) show high-resolution STEM images of two 

representative samples with x = 13.7% and 20% projected 

along the [110] axis. The inset of Figs. 1(a) and 1(b) show 

the transmission electron diffraction (TED) patterns of 

these samples. The STEM images and TED patterns indi-

cate that the crystal structure of (Ga,Fe)Sb layers are of 

zinc-blende type without any visible second phases.  

Fig. 1 (a) and (b) STEM images and TED patterns of  

(Ga1-x,Fex)Sb samples with x = 13.7% and 20%, respectively. 

Table I  Thickness d, Curie temperature TC, and hole concentra-

tion p at 300 K of (Ga1-x,Fex)Sb samples with x = 3.9 – 20%. 

x (%) d (nm) TC (K) p (cm-3) 

3.9 100 20 4.4 × 10
18

 

6.7 100 27 7.8 × 10
18

 

9.0 100 50 1.3 × 10
19

 

11.4 100 80 4.0 × 10
19

 

13.7 100 140 4.6 × 10
19

 

17.0 40 180 - 

20.0 30 230 - 

 

3. Magneto-optical properties. 

Figure 2(a) shows the MCD spectra of the (Ga1-x,Fex)Sb 

samples (x = 3.9 – 20%) and a reference undoped GaSb 

sample at 5 K with a magnetic field H of 1 T applied per-
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pendicular to the film plane. The MCD spectra of 

(Ga,Fe)Sb show strongly enhanced peaks at E1 (2.19 eV) 

and E1 + ∆1 (2.63 eV) corresponding to the optical critical 

point energies of the GaSb band structure [7],
 
indicating 

that (Ga,Fe)Sb maintains the zinc-blende crystal structure 

with large spin-split band structure due to the s,p-d ex-

change interactions. Figures 2(b) and 2(c) show the 

MCD-H characteristics of the samples with x = 17% and 

20%, respectively at different temperatures. Clear hystere-

sis curves were observed at low temperature, demonstrating 

the presence of ferromagnetic order at low temperature.  

Fig. 2 (a) Reflection MCD spectra measured at 5 K under a mag-

netic field of 1 Tesla applied perpendicular to the film plane for 

(Ga1-x,Fex)Sb samples with x = 3.9 – 20%. The MCD spectrum of 

a reference undoped GaSb sample is also shown. (b) and (c) 

MCD-H characteristics measured at a photon energy of 2.19 eV of 

(Ga,Fe)Sb samples with x = 17% and 20%, respectively.  

Fig. 3 (a) Hall resistance RHall vs. magnetic field H measured at 

different temperatures of the sample x = 20%. (b) TC vs. Fe con-

centration x. Inset shows TC vs. xp1/3. 

Next, we investigate the magneto-transport properties 

of the (Ga,Fe)Sb samples. The hole concentrations p esti-

mated by Hall effect measurements at 300 K are listed in 

the 4th columns of Table I. For the samples with x  17%, 

we cannot estimate p due to the influence of the anomalous 

Hall effect even at 300 K. One can see that p increases from 

4.4 × 10
18

 to 4.6 × 10
19 

cm
-3 

as x increases. This result may 

be explained by the increase of native acceptor defects due 

to the Fe doping, such as anti-site Ga. Figure 3(a) shows the 

Hall resistance vs. magnetic field (RHall–H) characteristics 

at various temperatures of the sample with x = 20%. At low 

temperatures, RHall are dominated by the anomalous Hall 

effect (AHE) with clear hysteresis curves, consistent with 

the MCD-H characteristics, thus supporting intrinsic ferro-

magnetism of (Ga,Fe)Sb. At 300 K, the RHall–H characteris-

tics are linear with positive slopes, indicating that all the 

samples are p-type. The TC values estimated by the Arrott 

plots of MCD – H characteristics and/or the AHE of all 

samples are listed in Table I and plotted as a function of x 

in Fig. 3(b). One can see that TC increases as x increases. 

However, TC is not linearly proportional to x. Instead, TC is 

proportional to xp
1/3

 as shown in the inset of Fig. 3(b). This 

indicates that TC also depends on p as in the case of other 

FMSs with hole-induced ferromagnetism. Note that the 

obtained TC (230 K) at x = 20% is the highest in III-V 

FMSs. To explain the ferromagnetism of (Ga,Fe)Sb, we 

have proposed a “resonant s,p-d exchange interaction” 

model in Fe-based narrow gap FMSs [4,5], in which the 

position of the d-level of the transition metals in the host 

semiconductor band structure plays an important role to 

induce the ferromagnetism [8].  

4. Conclusions 

P-type ferromagnetic semiconductor (Ga1-x,Fex)Sb (x 

= 3.9 – 20%) thin films were successfully grown by 

LT-MBE and show intrinsic ferromagnetism. The obtained 

TC (230 K) of (Ga,Fe)Sb (x = 20%) is the highest in III-V 

FMSs, demonstrating that Fe-doped FMSs are promising 

for semiconductor spintronic devices. Our results suggest 

that the position of the d-level of the transition metals in the 

host semiconductor band structure plays an important role 

to induce ferromagnetism. 
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