Low Interface Trap Density in In_{0.53}Ga_{0.47}As Metal-Oxide-Semiconductor Capacitors with Molecular Beam Deposited HfO₂/ La₂O₃ High-κ Dielectrics

Tai-Wei Lin¹, Jing-Neng Yao², Yueh-Chin Lin³, Kai-Chun Yang¹, Wen-Hao Wu³, Kuniyuki Kakushima⁴, Jer-Shen Maa⁵, Edward Yi Chang^{2,3,6} and Hiroshi Iwai^{4,6}

¹Institute of Photonic System, National Chiao-Tung University (NCTU).

1001 Ta Hsueh Road, Hsinchu 30010, Taiwan, R.O.C.

Phone: +886-9-3567-2968 E-mail: davidlin2200@hotmail.com

²Department of Electronics Engineering, National Chiao-Tung University (NCTU).

³Department of Materials Science and Engineering, National Chiao-Tung University (NCTU).

⁴ Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology.

J2-68, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

⁵Institute of Lighting and Energy Photonics, National Chiao-Tung University (NCTU).

⁶International college of Semiconductor Technology, National Chiao-Tung University(NCTU).

Abstract

In this work, we present the improvement of the interfaces between HfO2 and In0.53Ga0.47As by a thin La₂O₃ layer. Three structures of HfO₂ (6nm), HfO₂(6nm)/La₂O₃(0.5nm) and HfO₂ (6nm)/La₂O₃(1nm) were deposited by molecular beam deposition in ultra-high vacuum conditions and annealed at 450°C for device performance comparison. Excellent capacitance-voltage characteristics have been demonstrated along with unpinned Fermi level. Low Dit of 2×10¹¹ cm⁻².eV⁻¹ was achieved near the mid-gap of Ino.53Gao.47As.

1. Introduction

Recently, high electron mobility III-V metal-oxide semiconductor field-effect transistors (MOSFETs) have been widely investigated to replace Si-based complementary metal oxide semiconductor (CMOS)[1,2] due to the much higher electron mobility of the $In_XGa_{1-X}As$ devices. Unlike SiO₂ on Si substrates, the lack of high-quality thermodynamically stable gate dielectric insulators on III–V compound semiconductors remains to be the main challenge to commercialize the III-V MOSFET.

Among various high-k oxides, Al₂O₃, HfO₂ and La₂O₃ have attracted great attention as gate dielectric for InGaAs MOS devices. Al₂O₃ possess high bandgap and good thermal stability while HfO2 and La2O3 has high dielectric conwhich suitable for further stant, is equivalent-oxide-thickness (EOT) scaling. Therefore, interfaces between these high- κ materials and In_{0.53}Ga_{0.47}As have been widely investigated [3-5]. Furthermore, a new high-k composite structure composed of La₂O₃ and HfO₂ deposited by molecular beam deposition (MBD) showed excellent interface quality and promoted equivalent oxide thickness (EOT) scaling [6,7]. In this study, a thin La_2O_3 passivation layer on In_{0.53}Ga_{0.47}As surface was studied to attain high-quality interface.

2. Device fabrication and measurement

The In_{0.53}Ga_{0.47}As epitaxial layer of the III-V MOS ca-

pacitors was grown on the InP substrates. The wafers were first cleaned in 4% HCl solution for 3 minutes. Then, the wafers were loaded into an in situ MBD system to deposit HfO₂(6nm), HfO₂(6nm)/La₂O₃(0.5nm) and HfO₂(6nm) /La₂O₃(1nm) three oxide structures on n-In_{0.53}Ga_{0.47}As at 300°C with an overall pressure of 8×10^{-8} Torr , and the films were annealed in nitrogen gas at 450 °C for 5 minutes. Next, Ni/Au was deposited by electron beam evaporator as gate contact metal. Au/Ge/Ni/Au was deposited by electron beam evaporator and annealed at 250 °C for 30 sec for Ohmic contact formation, as shown in Figure 1. The HfO₂/InGaAs without and with 0.5 nm La₂O₃ and 1nm La₂O₃ metal-oxide semiconductor (MOS) capacitors were fabricated and compared.

The capacitance-voltage characteristic was measure by Agilent 4284 LCR meter, and interface trap density was measured by conductance method.

Fig. 1 Schematic illustration of fabricated (a) $HfO_2(6nm)$ (b) $HfO_2(6nm)/La_2O_3(1nm)$ (c) $HfO_2(6nm)/La_2O_3(0.5nm)$ MOS capacitors

3. Results and discussions

Figure 2(a)-(c) shows the multi-frequency C–V curves at low temperature (77K) of the HfO₂/In_{0.53}Ga_{0.47}As MOS capacitor with and without La₂O₃ insertion layer for the devices PDA at 450^oC. All of them show good accumulation, depletion and inversion behaviors at room temperature (not shown). After inserting a 1 nm La₂O₃ layer between the interfaces of $HfO_2/In_{0.53}Ga_{0.47}As$, accumulation capacitance value is degraded. The major cause of this phenomenon is that La₂O₃ reacts with InGaAs substrates to form an intermixed interface layer [8] after PDA at 450°C, forming a interfacial layer which possesses a lower dielectric constant, thus degrade the capacitance value. However, the MOS capacitor with 0.5 nm La₂O₃ insertion layer has higher capacitance value than the 1nm one due to a thinner interfacial layer is formed, because fewer In, Ga and As atoms diffuse into the 0.5 nm La₂O₃ insertion layer.

As presented in Figure 2(a)-(c), the bumps observed at 77K, which attributes to carriers exchange between half of the band-gap located traps and both minority and majority carriers bands[9], indicate that both 1nm and 0.5nm La₂O₃ insertion layer can reduce D_{it} of HfO₂ and In_{0.53}Ga_{0.47}As interface. Figure 2(d) shows the normalized conductance contour as a function gate voltage and frequency (1 kHz–1 MHz) of the HfO₂(6nm) /La₂O₃(0.5nm) MOS capacitor at 77 K. From the figure, the conductance peak maximum can shift along with gate bias and frequency (solid line), indicating that the Fermi level is unpinned.

Fig. 2. Multi frequency C-V curve at 77K of the (a) $HfO_2(6nm)$ (b) $HfO_2(6nm)/La_2O_3(1nm)$ (c) $HfO_2(6nm)$ /La_2O_3(0.5nm) MOS capacitors after PDA at 450°C in N₂ for 5 minutes and (d) Normalized parallel conductance contour map for the $HfO_2(6nm)$ /La₂O₃(0.5nm) MOS capacitor

The Dit distribution as a function of trap energy levels of the samples at 77K is shown in Fig 3. From the figure, excellent Dit of 2×10^{11} – 2.4×10^{11} eV⁻¹cm² in the energy range of 0.37–0.47 eV above In_{0.53}Ga_{0.47}As valence band maximum has been obtained. The great D_{it} of HfO₂(6nm)/ In_{0.53}Ga_{0.47}As MOS capacitor was also achieved as a result of ultra-high vacuum depositing environment of the MBD system. Comparison of Dit and capacitance -quivalent-thickness (CET) with other high- κ materials was shown in Table I.

Fig. 3 Interface trap density distribution of the sample extracted by conduction method at 77K.

Table I Comparison of Dit and capacitance -quivalent-thickness (CET) with other high- κ materials on In_{0.53}Ga_{0.47}As.

0.000 0.1.1				
Oxide	Equip-	Dit meas-	Dit	CET@
	ment	urement	(10 ¹² cm ²	1kHz
		method	eV ⁻¹)	(nm)
HfO2 (6nm)/	MBD	Conductance	0.2	1.8 @1V
La ₂ O ₃ (0.5nm)				
HfO ₂ (5.3nm)/	MBD	QS-CV	0.15	1.9 @ 2V
Al ₂ O ₃ (1.2nm)[10]		-		
HfO ₂ (7.8nm) [11]	ALD	Terman	2	1.9 @ 3V
Al ₂ O ₃ (5.5nm)[12]	ALD	Conductance	1.7	2.6 @ 3V

4. Conclusions

The HfO₂(6nm), HfO₂(6nm)/La₂O₃(0.5nm) and HfO₂(6nm)/La₂O₃(1nm) on n-In_{0.53}Ga_{0.47}As for MOS capacitor application is investigated. Excellent D_{it} of 2×10^{11} was achieved by inserting a 0.5nm thin La₂O₃ layer between HfO₂/In_{0.53}Ga_{0.47}As interfaces with PDA of 450°C for 5 minutes. Using a thin La₂O₃ as a passivation layer shows excellent D_{it} while keeping high capacitance value.

Acknowledgements

This work was long-term sponsored by the NCTU-UCB I-RiCE program, Ministry of Science and Technology, Taiwan, under Grant No. MOST 104-2911-I-009-301.

References

- [1] Uttam Singisetti et al., Phys. Status Solidi C 6, No. 6, 1394–1398 (2009)
- [2] Y. Xuan *et al.*, *IEEE ELECTRON DEVICE LETTERS*, VOL. 28, NO. 11, NOVEMBER 2007.
- [3] M. Fusi et al., Microelectron. Eng. 88, 435 (2011).
- [4] Chang, Y. C et al., Applied Physics Letters 92, 072901 (2008)
- [5] Zadeh, D. H et al., Solid-State Electronics 82 (2013): 29-33.
- [6] Yueh Chin Lin et al., IEEE ELECTRON DEVICE LETTERS, vol. 34, no. 10 (2013)
- [7] Wen Hao Wu et al., Applied Physics Express 7, 031201(2014)
- [8] Zadeh D. H et al., Abstr Solid State Dev Mater Conf 2012. PS-1-9.
- [9] K. Martens et al., IEEE Trans. Electron Devices 55(2) 547 (2008).
- [10] Chu, L. K et al., Applied Physics Letters. 99, 042908 (2011)
- [11] Y. C. Chang et al., *Applied Physics Letters.* 92, 072901 (2008)
- [12] Andrew D. Carter *et al.*, Applied Physics Express 4 (2011) 091102