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Abstract 

Classical diffusion and weak localization (WL) of 
electrons of mesoscopic system are examined by the 
chaotic billiard simulation, i.e., from the Boltzmannian 
picture. We first present the theory and results of the 
analysis of WL from Boltzmannian picture applied to 
bulk two-dimensional electron gas (2DEG) system with 
the probabilistic impurity scattering. Next, we show 
that the squared average of the distance between the 
position at time t, r(t), and the initial point r(0), i.e., 
<|r(t)-r(0)|2> is proportional to t in the mesoscopic loop 
array (MLA) structure for sufficiently large t. Thus, the 
diffusion coefficient DMLA can be determined macros-
copically. DMLA values thus determined including addi-
tional probabilistic impurity scattering agreed well with 
the experimental values obtained from the electrical 
conductivity measurement at 15 mK.  
 
1. Introduction 

Recently, much attention is paid to the spin-orbit inte-
raction (SOI) in semiconductor spintronics. Especially, the 
Rashba SOI [1], resulting from the structural inversion 
asymmetry, is important because of its gate controllability. 
One of the standard methods to extract the values of SOI 
has been the analysis of weak localization/antilocalization 
(WL/WAL) in 2DEG. In the WL/WAL theory, electron 
motions are assumed to be Brownian, not Boltzmannian, 
because of the mathematical convenience. However, it is 
more natural and transparent to consider the WL/WAL 
phenomena from the Boltzmannian picture, especially 
when considering the effect of spin precessions due to the 
Rashba-type SOI. This approach can be realized numeri-
cally based on the semiclassical billiard model. 

The effect of WL/WAL can be expressed by the dimen-
sionless quantity δ in the magneto-conductivity σ at suffi-
ciently low temperatures.  
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where σ0 is the electric conductivity without the WL/WAL 
correction (denoted as “classical term”). We analyze δ and 
σ0 in 2DEG and MLA, respectively, from the Boltzmannian 
picture in the following sections. 

 
2. WL in 2DEG 

We first show the quantitative result of the WL theory 
(Brownian picture) [2,3]. 
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where λF is the Fermi wave length, vF is fermi velocity, τ is 
the momentum relaxation time, τϕ is the phase coherence 
time and WtδS is the return probability within the small area 
δS around the origin [r(0)] at time t. The WL theory de-
duced the values δS = dtvFλF /π [m2] and Wt = (4πDt)-1 [m-2]. 
We note that the concept of return in the Brownian picture 
is purely probabilistic [Fig.1(a)]. 

In the Boltzmannian picture, the concept of return is a 
little bit different [Fig.1(b)]. Here, we consider an ensemble 
of a large number of trajectories, with homogeneously dis-
tributed initial conditions, and determine statistically what 
portion of them have the return count at the trajectory 
length L = vFt. Then, the definition of return requires a 
predetermined “judge length” because the origin is just a 
point. For example if a particle travelling along some tra-
jectory comes closest to the origin at the trajectory length L 
and the distance between this point and origin is smaller 
than half the judge length, then one obtains the return count 
one [Fig.1(b)].   
 

(a)    (b)  

Fig. 1 Schematic pictures for the concept of return. (a) Brownian 
picture. (b) Boltzmannian picture. Black point i in (a) and (b) 
shows the initial point at t=0 (origin). The blue area in (a) 
represents δS and the blue line in (b) shows the judge length for 
the returning criterion. We also show the enclosed area S in the 
Boltzmannian picture (b). 

The conclusion of the Boltzmann picture [3, Minkov] 
tells us  
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where WLdL in unit of m-1 is the ensemble average of the 
return count per unit judge length, limp is the mean free path 
in the 2DEG and Lϕ = vFτϕ is the phase coherence trajectory 
length. The actual (physical) value of the judge length that 
gives the correct values of δ  turned out to be λF/π. We can 
use Eq. (3) to calculate the weak localization effect quanti-
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tatively from the Boltzmannian picture.  
When the perpendicular magnetic field is applied, WL 

of electrons is partially broken by the magnetic field and 
WL is modulated as below. 
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where wcl(S, L)dS is portion of WL which has the encircling 
(enclosing) area (absolute value) between S and S+dS. The 
cosine term represents the effect of the magnetic field on 
the quantum interference between the time-reversal pair of 
the classical trajectories of electrons [4]. 

In the Browniann picture, the function wcl(S, L) can be 
obtained by the Wiener measure of the diffusion equation. 
In this work, we obtain wcl(S, L) from the Boltzman picture 
numerically. We then compare the obtained results with the 
existing well-known WL/WAL theories [5]. 

 
3. Classical Diffusion in MLA 

Next, we investigate the classical diffusion in the me-
soscopic loop array (MLA) structure from the Boltzman-
nian picture. The particular structure of our MLA is shown 
in Fig. 2. The electric conductivity (classic term) in MLA, 
σMLA, is related to the diffusion coefficient DMLA by Eins-
tein's relation as below. 
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Here the density of states ρMLA is related to the 2DEG bulk 
value m*/πћ2, but reduced by 0.524, which is the portion of 
the conductive part in MLA out of the whole sample area 
that contributes to the electric conductance. DMLA can be 
defined as <|r(t)-r(0)|2>/4t if the mean squared distance 
<|r(t)-r(0)|2> is proportional to t for sufficiently large t. We 
apply the chaotic billiard simulation (Boltzmannian picture) 
to calculate <|r(t)-r(0)|2> numerically. DMLA can also be 
calculated by velocity-velocity correlation DMLA = 0.5× 
ʃ<v(t)·v(0)>dt, which is mathematically equivalent to 
<|r(t)-r(0)|2>/4t. 

Fig. 3 (a) shows the snapshots of the classical diffusion 
of the particles placed in the black ring at the center at t = 0 
using the Boltzmannian picture (15,232 initial conditions), 
where L = vFt and the probabilistic impurity scattering with 
limp = 1.0 μm is also included. We found that the mean 
squared distances <|r(t)-r(0)|2> are 4.48, 40.26 and 399.28 
µm2 for L = 10, 100 and 1000 µm, respectively. Therefore, 
the time (length) scale where <|r(t)-r(0)|2> becomes pro-
portional to t (or L) is approximately t > 1.18×10-10 sec (L > 
100 µm). The DMLA value thus deduced is 8.5×10-2 m2/s. 

In Fig. 3 (b), we show the calculated values DMLA as a 
function of the the probabilistic mean free path limp. This 
can be compared to the experimental values in Fig. 3 (c), 
which were obtained from the experimental electric con-
ductivity values at 15 mK and using Eq. (5). From these 
results, the limp values in the experimental system turned out 
to be in the sub-micrometer order (limp < 1 µm), which 
agrees with the preliminary results obtained from the quan-
tum mechanical analysis of WL/WAL correction δ in Eq. 

(1) in this MLA system.  
 

 
Fig. 2 Schematic diagram for the Hall bar sample used in the 
present work. The left and right panels show the SEM micrograph 
and the Hall bar device of MLA, made of InGaAs/InAlAs quan-
tum well, used in the measurement. We have 5,408 rings in the 
actual Hall bar. 
 
(a)  

   (b)            (c) 

 
Fig. 3 (a) Snapshots of classical diffusion of Boltzmannian elec-
trons in MLA with limp = 1.0 μm. (b) The DMLA values by the 
chaotic billiard simulation as a function of limp. Here, we use vF 
= 8.51×105 m/s. (c) The experimental values of DMLA as a func-
tion of Vg. 
 
3. Conclusions 
   In this work, we illustrate the probabilistic and statistic-
al features of the weak localization in the bulk 2DEG sys-
tem from the Brownian and Boltzmannian pictures, respec-
tively. We also calculated the classical diffusion coefficient 
DMLA in a specific MLA structure using the Boltzmannian 
picture. The obtained DMLA values agreed with the experi-
mental results deduced from the electric conductivity mea-
surements at 15 mK. We therefore conclude that the elec-
tric conduction in the MLA system can be understood from 
the viewpoint of the diffusion of Boltzmaniann particles. 
References 
[1] S. Faniel, T. Matsuura, S. Mineshige, Y. Sekine and T. Koga, 

Phys. Rev. B 83 (2011) 115309. 
[2] A. I. Larkin and D. E. Khmel'nitskiĭ, Sov. Phys. Usp. 25 

(1982) 185.  
[3] S. Chakravarty and A. Schmid, Phys. Rep. 140 (1986) 193. 
[4] B. L. Al'tshuler, A. G. Aronov and B. Z. Spivak, JETP Lett. 33 

(1981) 94. 
[5] S. V. Iordanskii, Y. B. Lyandageller and G. E. Pikus, JETP 

Lett. 60 (1994) 206. 

- 429 -


