Localized Surface Plasmon-enhanced Light Emission Output of Amorphous Silicon Quantum Dots Light-Emitting Device with Plasmonic Subwavelength Ag grating structure

Tsung-Han Tsai, Wing-Kit Choi and Hoang Yan Lin

Graduate Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan 10617, Republic of China Author e-mail address: <u>d00941027@ntu.edu.tw</u>

Abstract

We investigated experimentally the enhanced emission output of the amorphous silicon quantum dots (a-Si QDs) light-emitting devices (LEDs) with plasmonic subwavelength Ag grating, through strongly coupling a-Si QDs into localized surface plasmons (LSPs) modes.

1. Introduction

Silicon quantum dots (Si-QDs) light-emitting devices (LEDs) have been widely studied as a novel light source in recent years for the next generation Si-based optoelectronic integrated circuits (OEICs) [1]. To achieve the goal of the practical applications in future OEICs, high emission intensity and low temperature growth for Si-QDs are required. In this research, we focus on the localized surface plasmons (LSPs)-enhanced spontaneous emission of a-Si QDs LEDs with the Ag/SiO_x:a-Si QDs/Ag nanostructures, by tuning the one-dimensional (1D) subwavelength Ag grating on the top, through the strong a-Si QDs–LSPs coupling based on the Fermi's golden rule.

2. Experiment

The devices with the Ag/SiO_x:a-Si QDs/Ag sandwich nanostructures were fabricated as follows. First, a 100 nm Ag film was deposited on the Si substrate by thermal evaporation, followed by the Si-rich SiO_x (SRO, x < 2) film deposited, using plasma enhanced chemical vapor deposition (PECVD) system with SiH₄ and N₂O reactant gas. Then, the SRO film was annealed at 300°C -700°C for 1 hr in a quartz furnace with flowing N₂ gas to form SRO film with embedded a-Si QDs (SiO_x:a-Si QDs film) as a light emitter. Then, electron-beam (e-beam) lithography, thermal evaporation, and lift-off process are used to fabricate 1D Ag grating on the top of SiO_x:a-Si QDs film. Fig. 1 shows the device structure with 1D Ag grating on the top. And the structural parameters of 1D Ag grating for samples A-D with Ag wire width d and pitch p are listed in Table I.

3. Results and Discussions

Fig. 2 shows the top-view scanning electron microscopy (SEM) images of the 1D Ag grating for samples B-D. Fig. 3 shows the depth profiles of Si, O, and Ag elements for SiO_x:a-Si QDs film by X-ray photoelectron spectroscopy (XPS) analysis. It is found that the average Si concentration of SiO_x:a-Si QDs film up to 48.27 at.% since high SiH₄/N₂O gas flow ratio during the PECVD process.

Fig. 1. The device structure of a-Si QDs LEDs with tri-layer Ag/SiO_x:a-Si QDs/Ag nanostructures.

Table I. The structural parameters of 1D Ag grating for samples A-D.

р	d	d/p
500 nm	125 nm	0.25
600 nm	150 nm	0.25
700 nm	175 nm	0.25
	p 500 nm 600 nm 700 nm	p d 500 nm 125 nm 600 nm 150 nm 700 nm 175 nm

Fig. 2. The top-view SEM images of the 1D Ag grating for samples B, C. and D. Scale bar is 500 nm.

There are excessive Si atoms in SiO_x:a-Si QDs film lead to the Si atoms could move simply and accumulate to form Si-QDs during post low annealing process. Fig. 4 shows the change in PL peak position of SiO_x:a-Si QDs film depending on the annealing temperature, and exhibits that the main PL peak is shifted to the long wavelength side when annealing temperature is increased from 300°C to 700°C. It can be seen the main PL peaks of these samples were not located at the PL range of oxygen related defects [2]. And the more beneficial for quantum confinement effect (QCE) surpass the carriers recombination of interface states for the smaller size of a-Si QD (~1.7 nm) [3]. Hence, we consider that the emission spectra of these devices originated from the QCE of a-Si QDs. Fig. 5 shows the reflection spectra of samples B-D, and shows the reflection dips contributed to the excitation of LSPs mode on the Ag grating. Fig. 6 shows the PL spectra of samples A-D. The significantly enhancement of PL intensity is found for sample B with optimized 1D Ag-grating, through the strong a-Si QDs-LSPs coupling.

Fig. 3. The concentration-depth profiles of Si, O, and Ag atoms for SiO_x:a-Si QDs film, and at SiO_x:a-Si QDs/Ag film interface by XPS analysis.

Fig. 4. The PL spectra of SiO_x:a-Si QDs films with different annealing temperatures.

4. Conclusions

In this work, we focus on the plasmon-induced emission enhancement of a-Si QDs LEDs with plasmonic Ag grating on the top, through the strong a-Si QDs–LSPs coupling. A maximum of 2.46-fold enhancement of the PL integrated intensity and a minimum of spectral bandwidth of 67 nm for sample B are found, due to the close match between the center emission wavelength of a-Si QDs (510 nm) and the LSPs resonance (526 nm).

Acknowledgements

The authors would like to acknowledge the Ministry of Science and Technology of Taiwan for the financial support of this research under Contract No. MOST 102-2221-E-002-205-MY3 and MOST 104-3113-E-155-001, and National Taiwan University under the Aim for Top University Projects 104R7607-4 and 104R8908.

References

- L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, Nature 408 (2000) 440.
- [2] G. R. Lin, C. J. Lin, C. K. Lin, L. J. Chou, L. J. Chou, and Y. L. Chueh, Journal of Applied Physics 97 (2005) 094306.
- [3] C. Delerue, G. Allan, and M. Lannoo, Physical Review B 48 (1993) 11024.