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Abstract 

We investigated experimentally the enhanced emis-
sion output of the amorphous silicon quantum dots (a-Si 
QDs) light-emitting devices (LEDs) with plasmonic 
subwavelength Ag grating, through strongly coupling 
a-Si QDs into localized surface plasmons (LSPs) modes. 
 
1. Introduction 

Silicon quantum dots (Si-QDs) light-emitting devices 
(LEDs) have been widely studied as a novel light source in 
recent years for the next generation Si-based optoelectronic 
integrated circuits (OEICs) [1]. To achieve the goal of the 
practical applications in future OEICs, high emission inten-
sity and low temperature growth for Si-QDs are required. 
In this research, we focus on the localized surface plasmons 
(LSPs)-enhanced spontaneous emission of a-Si QDs LEDs 
with the Ag/SiOx:a-Si QDs/Ag nanostructures, by tuning 
the one-dimensional (1D) subwavelength Ag grating on the 
top, through the strong a-Si QDs–LSPs coupling based on 
the Fermi’s golden rule. 
 
2. Experiment 

The devices with the Ag/SiOx:a-Si QDs/Ag sandwich 
nanostructures were fabricated as follows. First, a 100 nm 
Ag film was deposited on the Si substrate by thermal 
evaporation, followed by the Si-rich SiOx (SRO, x < 2) film 
deposited, using plasma enhanced chemical vapor deposi-
tion (PECVD) system with SiH4 and N2O reactant gas. 
Then, the SRO film was annealed at 300℃-700  ℃ for 1 hr 
in a quartz furnace with flowing N2 gas to form SRO film 
with embedded a-Si QDs (SiOx:a-Si QDs film) as a light 
emitter. Then, electron-beam (e-beam) lithography, thermal 
evaporation, and lift-off process are used to fabricate 1D 
Ag grating on the top of SiOx:a-Si QDs film. Fig. 1 shows 
the device structure with 1D Ag grating on the top. And the 
structural parameters of 1D Ag grating for samples A-D 
with Ag wire width d and pitch p are listed in Table I. 
 
3. Results and Discussions 

Fig. 2 shows the top-view scanning electron 
microscopy (SEM) images of the 1D Ag grating for sam-
ples B-D. Fig. 3 shows the depth profiles of Si, O, and Ag 
elements for SiOx:a-Si QDs film by X-ray photoelectron 
spectroscopy (XPS) analysis. It is found that the average Si 
concentration of SiOx:a-Si QDs film up to 48.27 at.% since 
high SiH4/N2O gas flow ratio during the PECVD process. 
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Fig. 1. The device structure of a-Si QDs LEDs with tri-layer 

Ag/SiOx:a-Si QDs/Ag nanostructures. 

 
Table I. The structural parameters of 1D Ag grating  

for samples A-D. 
 

A ----- ----- -----

B 500 nm 125 nm 0.25

C 600 nm 150 nm 0.25

D 700 nm 175 nm 0.25

Sample              p                     d                 d/p        

 
 
 

 
 

Fig. 2. The top-view SEM images of the 1D Ag grating for 
samples B, C. and D. Scale bar is 500 nm. 
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There are excessive Si atoms in SiOx:a-Si QDs film lead to 
the Si atoms could move simply and accumulate to form 
Si-QDs during post low annealing process. Fig. 4 shows the  
change in PL peak position of SiOx:a-Si QDs film depend-
ing on the annealing temperature, and exhibits that the main 
PL peak is shifted to the long wavelength side when an-
nealing temperature is increased from 300℃ to 700℃. It 
can be seen the main PL peaks of these samples were not 
located at the PL range of oxygen related defects [2]. And 
the more beneficial for quantum confinement effect (QCE) 
surpass the carriers recombination of interface states for the 
smaller size of a-Si QD (~1.7 nm) [3]. Hence, we consider 
that the emission spectra of these devices originated from 
the QCE of a-Si QDs. Fig. 5 shows the reflection spectra of 
samples B-D, and shows the reflection dips contributed to 
the excitation of LSPs mode on the Ag grating. Fig. 6 
shows the PL spectra of samples A-D. The significantly 
enhancement of PL intensity is found for sample B with 
optimized 1D Ag-grating, through the strong a-Si 
QDs–LSPs coupling. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 3. The concentration-depth profiles of Si, O, and Ag atoms  
for SiOx:a-Si QDs film, and at SiOx:a-Si QDs/Ag film interface by 

XPS analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The PL spectra of SiOx:a-Si QDs films with  
different annealing temperatures. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Fig. 5. The measured reflection spectra of the 
      samples B, C, and D. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Fig. 6. The PL spectra of the samples A-D. 
 
4. Conclusions 
   In this work, we focus on the plasmon-induced 
emission enhancement of a-Si QDs LEDs with plasmonic 
Ag grating on the top, through the strong a-Si QDs–LSPs 
coupling. A maximum of 2.46-fold enhancement of the PL 
integrated intensity and a minimum of spectral bandwidth 
of 67 nm for sample B are found, due to the close match 
between the center emission wavelength of a-Si QDs (510 
nm) and the LSPs resonance (526 nm). 
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