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Abstract 

We developed a broadband gain superluminescent 
diode (SLD) based on self-assembled InAs quantum 
dots (QDs) for optical coherence tomography (OCT). 
Four layers of InAs QDs with controlled emission 
wavelengths via strain reducing layers were embedded 
in a conventional GaAs and AlGaAs p/n-junction. A 
straight ridge waveguide with segmented contacts was 
formed on the grown wafer, and an as-cleaved 
4-mm-length chip was prepared. Electroluminescence 
(EL) measurements under various injection currents 
indicated blue-shift of spectrum due to contributions of 
emissions from first and second excited states of the 
QDs. In addition, gain spectra were deduced from EL 
intensities with different lengths under identical injec-
tion currents obtained by using the segmented contacts. 
The gain spectra show a broadband gain beyond 160 
nm. These results demonstrate the potential of the 
QD-based SLD as the light source for high-resolution 
OCT. 
 
1. Introduction 

Non-invasive cross-sectional imaging system, optical 
coherence tomography (OCT) [1], has been intensively 
developed and widely used in various medical fields. The 
OCT operates based on the low-coherence interferometry, 
and a broadband light source is required for achieving high- 
resolution OCT imaging [2]. In addition, a center wave-
length of the light source should belong to the near-infrared 
(NIR) range, which can further penetrate in biological sam-
ples, to obtain a large imaging depth. 

Self-assembled InAs quantum dots (QDs) grown on a 
GaAs substrate emit a broadband spectrum at NIR resulting 
from size and compositional distributions in the ensemble. 
Thus, the InAs QDs have been recognized as an ideal mate-
rial for OCT light source [3]. We have so far fabricated a 
superluminescent diode (SLD) light source based on the 
InAs QDs with controlled emission wavelengths [4] and 
demonstrated OCT imaging by using the QD-based SLD 
[5]. However, the electro-luminescence (EL) emissions 

arose from recombination between only the ground states 
(GS) and the 1st excited states (ES1) of the QDs by a limi-
tation of current density through a single contact electrode. 

In this work, we developed a QD-based SLD with seg-
mented contacts to increase the injection current density 
and induce emissions from higher (2nd) excited states 
(ES2) in QDs. The fabricated QD-based SLD was evaluat-
ed as a light source for OCT through EL measurements and 
deduced gain spectra. 
 
2. Experiment 

As shown in Fig. 1(a), a wafer including four InAs QD 
layers with multiple emission wavelengths was grown by 
molecular beam epitaxy (MBE) on an n+-GaAs (001) sub-
strate. The emission wavelength of each QD layer was con-
trolled by varying the thickness of the strain reduced layer 
(0-4 nm) deposited on the QD. A 240-nm-thick GaAs 
waveguide layer including QD layers is optically and elec-
tronically confined within 1.5-μm-thick p-/n-Al0.35Ga0.65As 
cladding layers.  

A straight ridge-type waveguide (RWG) was fabricated 
on the grown wafer. The width and height of the RWG are 
approximately 5 and 1.44 m, respectively. Then, seg-
mented contacts with 1 mm long, which are electrically 
isolated, were formed on the RWG, as shown in Fig. 1(b). 
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Fig. 1 (a) Profile and (b) Plan-view schematic images and a pho-
tograph of a fabricated chip. 
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The EL emission from the RWG was measured and the 
optical gain was deduced from EL spectra of driven RWG 
lengths of L and 2L (one and two segments) under identical 
injection current density, J, expressed as the following 
equation [6]: 
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3. Results and Discussion 

Figure 2(a) shows EL spectra obtained from the fabri-
cated chip under various injection currents through the 
contact nearest to the edge. The peak wavelength was 
blue-shifted from approximately up to 1120 nm with the 
increase in the injection current. This can be attributed to 
the state-filling effect, which occurs in order of GS, ES1, 
and ES2 of QDs. The dominant emission sequentially arose 
from the GS centered at approximately 1220 nm, ES1 at 
1150 nm, and ES2 at 1100 nm with increasing the injection 
current. Variations of EL intensity of each wavelength in 
the spectra clearly show the state-filling effects, as shown 
in Fig. 2(b). 
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Fig. 2 (a) EL spectra obtained from the fabricated chip under var-
ious injection currents through the contact nearest to the edge. (b) 
EL intensity plotted for each wavelength as a function of injection 
current. 
 

Figure 3 shows deduced net modal gain spectra under 
various injection currents. The positive and negative net 
modal gain spectrum means that the QDs work as gain and 

absorption media at the wavelength. The positive net modal 
gain extends to shorter wavelength with increase in injec-
tion current, and the bandwidth of the gain increased up to 
approximately 160 nm at an injection current of 100 mA. 
The extension of the positive gain can be attributed to the 
sequential state-filling effect from GS to ES2, correspond-
ing to the EL spectrum. Although it is difficult to distin-
guish them, the gain value increased from GS to ES2. This 
can be resulted from increase in the number of states from 
GS to ES of QDs. These results indicate the effectiveness 
of the segmented contacts for inducing higher ES emissions 
and broadband gain from the QDs. 
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Fig. 3 Net modal gain spectra of the QD-SLD under various 
injection currents. 
 
4. Conclusions 
   A self-assembled InAs QD-based SLD with segmented 
contacts was developed and demonstrated to exhibit a 
broadband gain spectrum. The gain spectrum indicate the 
QD-SLD as a broadband gain media (beyond 160 nm) and 
its potential as the light source for high-resolution OCT. 
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