# Improving Crystalline Quality of Sputtering Deposited MoS<sub>2</sub> Thin Film by Post-Sulfurization Annealing Using (t-C<sub>4</sub>H<sub>9</sub>)<sub>2</sub>S<sub>2</sub>

S. Ishihara<sup>1</sup>, K. Suda<sup>1</sup>, Y. Hibino<sup>1</sup>, N. Sawamoto<sup>1</sup>, T. Ohashi<sup>2</sup>, S. Yamaguchi<sup>2</sup>, K. Matsuura<sup>2</sup>, H. Machida<sup>3</sup>, M. Ishikawa<sup>3</sup>, H. Sudoh<sup>3</sup>, H. Wakabayashi<sup>2</sup> and A. Ogura<sup>1</sup>

<sup>1</sup>Meiji University, School of Science and Technology

1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan

Phone: +81-44-934-7352, E-mail: ce41007@meiji.ac.jp

<sup>2</sup>Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan

<sup>3</sup>Gas-phase Growth Ltd,

#301 Nokodai-Tamakoganei Venture Port, 2-24-16 Naka, Koganei, Tokyo 184-0012, Japan

# Abstract

Disorders such as sulfur vacancies in sputtering deposited MoS<sub>2</sub> thin film may reduce the field-effect mobility. In order to complement sulfur vacancies, we performed post-sulfurization annealing on the sputtered-MoS<sub>2</sub> thin film. As the result, sulfur vacancies in the sputtered-MoS<sub>2</sub> film were filled up with sulfur atoms, and large-scale high-quality MoS<sub>2</sub> thin film was obtained.

### **1. Introduction**

Molybdenum disulfide ( $MoS_2$ ), which is a kind of the transition-metal dichalcogenides, has a layered structure. It is reported that  $MoS_2$  shows excellent optical and electrical properties even in thin regions, such as the band gap shift from indirect to direct [1] or a comparably high mobility [2]. In most of the previous studies,  $MoS_2$  thin film has been prepared by mechanical exfoliation from bulk  $MoS_2$ . However, there are several problems that the mechanical exfoliation method presents limited flake sizes and depletion-mode MOSFETs due to impurities [3, 4].

In order to solve these problems, we fabricated  $MoS_2$ thin film by sputtering deposition under high vacuum conditions. We have achieved to form a large-scale five-layer sputtered-MoS<sub>2</sub> film on SiO<sub>2</sub>/Si substrate and to decrease its carrier density dramatically compared to an exfoliated  $MoS_2$  [5, 6]. However, there are some sulfur vacancies in the sputtered-MoS<sub>2</sub> thin film which may reduce the mobility. Therefore, in this study, we performed post-sulfurization annealing on the  $MoS_2$  thin film in order to complement sulfur vacancies, and investigated the physical, chemical and optical properties of sulfurized-MoS<sub>2</sub> film.

# 2. Results and Discussion

MoS<sub>2</sub> thin film was fabricated by RF magnetron sputtering on SiO<sub>2</sub>/Si substrates. The sputtering conditions were as follows: substrate temperature (400°C), RF power (150 W), sputtering duration (155 s) and Ar partial pressure (0.55 Pa). The chamber was evacuated to a pressure of  $10^{-6}$ Pa before the sputtering. The MoS<sub>2</sub> target is 99.79% pure and an effective diameter of 80mm. Post-sulfurization annealing was performed in a quartz tube reactor at atmospheric pressure. During the post-sulfurization annealing, the sputtered-MoS<sub>2</sub> temperature was kept at  $600^{\circ}$ C. We used di-tertiary-butyl disulfide [(t-C<sub>4</sub>H<sub>9</sub>)<sub>2</sub>S<sub>2</sub>] as a sulfur precursor.

Fig. 1 shows (a) Mo 3d and (b) S 2p XPS spectra of as-deposited and sulfurized  $MoS_2$  films. From the  $MoS_2$  peak area ratio (S/Mo), sulfurized  $MoS_2$  film ( $MoS_{1.9}$ ) approached to stoichiometric composition compared to as-deposited  $MoS_2$  film ( $MoS_{1.8}$ ). Therefore, it was confirmed that sulfur vacancies in sputtered- $MoS_2$  film were complemented with sulfur atoms. Moreover, the  $MoO_3$  peak decreased after the sulfurization compared to the large peak detected in as-deposited  $MoS_2$  film, as shown in Fig. 1 (a). It suggests that the oxygen which combined with sulfur vacancies were substituted with sulfurs by the sulfurization.

Fig. 2 shows a cross sectional TEM image of sulfurized film. From the TEM observation, it was confirmed that the layered  $MoS_2$  film was uniformly fabricated on the SiO<sub>2</sub>/Si substrate with the thickness of 5.85 nm (9 layers). Furthermore, from the XRD investigation as shown in Fig. 3, only the  $MoS_2(002)$  diffraction peak was detected. This indicated that the  $MoS_2$  film remained parallel to the substrate surface even after the sulfurization.

The optical properties of sulfurized film was investigated using spectroscopic ellipsometry. The optical constants n and k were obtained from fitting of the ellipsometric parameters, Psi and Delta, by fixing the film thickness of 5.85 nm and an incident angle of 75.14°. Then, we calculated the absorption coefficient of sulfurized film using the relation of  $\alpha=4\pi k/\lambda$ , and taking that value into account for the Tauc plot [7], it was determined that the sulfurized film has an indirect band gap of 1.34 eV (Fig. 4).

Fig. 5 shows Raman spectra of as-deposited and sulfurized films. Raman shifts and intensities were calibrated by a bulk Si peak (Si=520 cm<sup>-1</sup>). Two Raman modes,  $E_{2g}^1$  and  $A_{1g}$ , were observed and the peak intensities increased after the sulfurization. Therefore, it was confirmed that crystalline quality of the sputtered-MoS<sub>2</sub> was improved due to the post-sulfurization annealing. Moreover, a frequency difference between  $E_{2g}^1$  and  $A_{1g}$  peaks of sulfurized film approached to bulk while that of as-deposited film is larger than bulk owing to the k = 0 Raman selection rule breaks caused by sulfur vacancies.

# 3. Conclusions

From the investigations by Raman and XPS, the sputtered-MoS<sub>2</sub> thin film after sulfurization improved crystalline quality since sulfur vacancies were complemented with sulfur atoms. From the results of TEM, and XRD, it was confirmed that large-scale layered MoS<sub>2</sub> thin film can be obtained by sulfurization of sputtered-MoS<sub>2</sub> thin film. By investigating with spectroscopic ellipsometry, the optical band gap of sulfurized film was determined as 1.34 eV.

#### References

- [1] K.F. Mak, et al., Phys. Rev. Lett., 105 (2010) 136805.
- [2] S. Das, et al., Nano Lett., 13 (2012) 100-105.
- [3] B. Radisavljevic, et al., Nature Nanotech., 6 (2011) 147-150.
- [4] K. Dolui, et al., Phys. Rev. B, 87 (2013) 165402.
- [5] T. Ohashi, et al., Jpn. J. Appl. Phys., 54 (2015) 04DN08.
- [6] B. Radisavljevic and A. Kis, Nature Mater., 12 (2013) 815-82.
- [7] C. Yim, et al., Appl. Phys. Lett., 104 (2014) 103114.



Fig. 1 (a) Mo 3d and (b) S 2p XPS spectra of as-deposited and sulfurized MoS<sub>2</sub> films.



Fig. 2 Cross sectional TEM image of sulfurized film.





Fig. 5 Raman spectra of as-deposited and sulfurized films.