# PtGe-Source/Drain Ge p-MOSFET with High On/Off Ratio and Low Parasitic Resistance

Shintaro Tanaka<sup>1</sup>, Yuta Nagatomi<sup>1</sup>, Yuichi Nagaoka<sup>1</sup>, Keisuke Yamamoto<sup>2</sup>, Dong Wang<sup>1</sup>, and Hiroshi Nakashima<sup>2</sup>

<sup>1</sup>Interdisciplinary Graduate School of Engineering Science, Kyushu University 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan E-mail: 2ES14036K@s.kyushu-u.ac.jp <sup>2</sup>Art, Science and Technology Center for Cooperative Research, Kyushu University

6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan

## Abstract

We investigated fabrication of PtGe/Ge contacts with low hole barrier height ( $\Phi_{BP}$ ) and its electrical passivation. A PtGe/n-Ge contact passivated by an ultrathin SiO<sub>2</sub>/GeO<sub>2</sub> bilayer showed high electron barrier height ( $\Phi_{BN}$ ) of 0.64 eV, indicating  $\Phi_{BP}$ ~0 eV and an on/off ratio of ~10<sup>6</sup>. The p-MOSFET with an equivalent oxide thickness (EOT) of 3.4 nm was fabricated using **PtGe** contacts as metal source/drain(S/D), which showed well-behaved transistor operation. From the investigation of device performance, we showed that the on/off ratio of drain current and the parasitic resistance of PtGe-S/D were much superior compared with those of HfGe-S/D p-MOSFET.

# 1. Introduction

Ge is of great interest as a high mobility channel material for future CMOS devices because of its high intrinsic carrier mobility. However, it is difficult to form shallow source/drain (S/D) junctions with low sheet and contact resistances because of the low dopant solubility. Metal S/D MOSFETs are a promising solution to these problems.<sup>1,2)</sup> To realize high performance, metal/Ge contacts with low hole barrier height ( $\Phi_{BP}$ ) and low electron barrier height ( $\Phi_{BN}$ ) are needed for p- and n-MOSFETs, respectively. In this study, we focussed on the fabrication of a contact with low  $\Phi_{BP}$ .

Another important issue for fabrication of metal/Ge contacts is the surface passivation. A surface layer on a bared n-Ge substrate is usually depleted owing to Fermi-level-pinning (FLP).<sup>3,4)</sup> Thus, good rectified characteristics can be simply obtained. However, the peripheral surface-state generation current ( $I_p$ ) increases when the surface passivation is inadequate. Since the surface passivation is essential for the device, the passivation technique is also as important as a selection of low- $\Phi_{BP}$  material.

In this paper, we report electrical properties of a PtGe/Ge contact passivated by an ultrathin  $SiO_2/GeO_2$  bilayer. We also report the fabrication and performance of p-MOSFETs featuring PtGe-S/D, which had a gate stack structure of TiN/Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>/GeO<sub>2</sub>/Ge and an EOT of 3.4 nm.

## 2. Fabrications of PtGe/Ge Contact and p-MOSFET

The substrates used were n-type (100) Ge with a resistibity of 0.4  $\Omega$ ·cm, corresponding to an donor concen-

tration of  $5 \times 10^{15}$  cm<sup>-3</sup>. The chips were dipped in dilute HF solution followed by rinsing in DI water. After that, Pt and Ti were deposited by rf sputtering. Note that the Ti film played a role of a cap for a Pt film because the Pt film without the Ti cap was partially peeled by DI water rinsing. Ti/Pt/Ge contacts with an area of  $180 \times 400 \ \mu m^2$  were formed by lift-off process. Then, the Ti/Pt/Ge contacts were followed by PMA at a temperature in the range of 400-500°C for 30 min in N<sub>2</sub>. The PtGe/Ge contact was passivated using the following two methods after 0.5 % dilute HF cleaning and DI water rinsing. The first method was bilayer passivation (BLP), by which a Ge surface was electrically passivated by an ultrathin SiO<sub>2</sub>/GeO<sub>2</sub> bilayer. The second method was electron cyclotron resonance (ECR) plasma deposition.<sup>5)</sup> The substrate temperature in BLP and ECR plasma deposition was 350°C and 130°C, respectively. Then, the samples were cooled down to RT, and a 50 nm-thick SiO<sub>2</sub> films were deposited. PDA was performed at a temperature in the range of 400-500°C for 30 min in  $N_2$ . After the passivation, contact holes were opened, and Al electrodes were formed by lift-off techniques. Finally, contact annealing was carried out at 300°C for 10 min in N<sub>2</sub>.

Figure 1 illustrates our gate-last process for the metal S/D p-MOSFET. After the BLP, an  $Al_2O_3$  film with a thickness of 4.0 nm was deposited by ALD at 300°C. Al/TiN films were deposited and fabricated as metal gate.



Fig. 1 Fabrication process for the PtGe-S/D p-MOSFET.

#### **3.Results and discussion**

The  $\Phi_{BN}$  and the ideality factor (*n*) were obtained from the forward *I-V* characteristics. Figures 2(a) and 2(b) show the vertical and lateral *I-V* characteristics of a PtGe/Ge contact without surface passivation and the contacts with BLP and ECR plasma deposition, respectively,



Fig. 2 (a) Vertical and (b) lateral *I-V* characteristics of a PtGe/Ge contact without surface passivation and the contacts with BLP and ECR plasma deposition.

where PMA and PDA temperature were 500 and 400°C, respectively.

A contact without surface passivation shows excellent rectifying characteristics with a  $\Phi_{BN}$  of 0.64 eV and *n* of 1.02. A contact with BLP was similar to a contact without surface passivation and showed a lower leakage-current, a high on/off ratio of ~10<sup>6</sup>, a  $\Phi_{BN}$  of 0.64 eV, and an *n* of 1.02. On the other hand, the properties passivated by ECR plasma deposition method were much worse than that of BLP despite the use of SiO<sub>2</sub>/GeO<sub>2</sub> passivation. Therefore, the excellent characteristics of a contact with BLP are attributable to good passivation effect by the present BLP method on a Ge surface. Thus, we concluded that a PtGe contact with BLP is useful as S/D in Ge p-MOSFET and the performance is maintained for PMA and PDA in the range of 400-500°C.

Figure 3 shows the drain current ( $I_D$ ) and source current ( $I_S$ ) vs drain voltage ( $V_D$ ) characteristics for the fabricated p-MOSFET. Here, the flat band voltage ( $V_{FB}$ ), the threshold voltage ( $V_{TH}$ ), and EOT were +0.08 V, -0.30 V, and 3.4 nm, respectively; channel length (L) and width (W) were 100 and 390 µm, respectively. The channel conduction is well controlled by the gate voltage ( $V_G$ ), implying that the PtGe contact with BLP works well as S/D. Furthermore, the difference between  $I_D$  and  $I_S$  is relatively small, implying that substrate current ( $I_{SUB}$ ) is considerably small thanks to high  $\Phi_{BN}$  of the PtGe/Ge drain-contact.

Figure 4 shows  $I_D$ ,  $I_S$ , and  $I_{SUB}$  vs  $V_G$  characteristics with  $V_{\rm D}$ = -0.01, -0.1, and -1 V. On/Off ratios of  $I_{\rm D}$  at  $V_{\rm D}$  of -0.1 V and -1 V were  $6.2 \times 10^2$  and  $7.2 \times 10^2$ , respectively, which are almost 10 times larger than that of HfGe-S/D MOSFET with an EOT of 3.2 nm.<sup>6)</sup> The subthreshold slopes (SS) of  $I_{\rm S}$  at  $V_{\rm D}$ =-0.01 V was 85 mV/dec, corresponding to  $D_{\rm it}$ =2.3 × 10<sup>12</sup> cm<sup>-2</sup> eV<sup>-1</sup>. Figure 5 shows the field-effect hole mobility ( $\mu_h$ ). The  $\mu_h$  was evaluated using data from  $V_{\rm D}$ =-0.01 V with the relation the  $\mu_{\rm h} = g_{\rm m} / [(W/L)C_{\rm ox}V_{\rm D}]$ , where  $g_{\rm m}$  is the transconductance and  $C_{\text{ox}}$  is the inversion channel capacitance. These three plots accord with each other and show peak  $\mu_{\rm h}$  of ~200 cm<sup>2</sup>/Vs. For comparison, the results obtained from HfGe-S/D p-MOSFETs are also shown in Fig. 5.<sup>6)</sup> It is clear that  $\mu_{\rm h}$ deteriorated with a decrease in L and with a negative increase in V<sub>G</sub>. The parasitic resistances for PtGe- and HfGe-S/D were estimated as ~50 and ~300  $\Omega$ , respectively. Thus, we concluded a PtGe contact with BLP is very useful as S/D in Ge p-MOSFET



#### 4. Conclusions

We established a method for fabrication of a PtGe/Ge contact with low  $\Phi_{\rm BP}$  and its electrical passivation. The PtGe/Ge contacts with BLP showed  $\Phi_{\rm BP}$  of ~0 eV and high on/off ratio of ~10<sup>6</sup>. The p-MOSFET with an EOT of 3.4 nm was fabricated using the PtGe-S/D and demonstrated their operation. The transfer characteristics of  $I_{\rm D}$  indicated an on/off ratio of ~10<sup>3</sup>, which was one order of magnitude higher than that of HfGe-S/D p-MOSFET. The parasitic resistance could be decreased down to 1/6 using PtGe-S/D instead of HfGe-S/D.

#### **5.References**

- [1] A. Toriumi et al., IEDM Tech. Dig., 2011, p.646.
- [2] J. M. Larson et al., IEEE ED 53, 1048 (2006).
- [3] A. Dimoulas et al., APL. 89, 252110 (2006).
- [4] T. Nishimura et al., APL. 91, 123123 (2007).
- [5] K. Yamamoto et al., JJAP. 51, 07208 (2012).
- [6] Y. Nagatomi et al., Ext. Abstract SSDM, 2014, p.10.