# Sub-0.2V Switching Voltage of Negative Capacitance Double Gate Tunnel FET Using Ferroelectric Gate

C. Liu<sup>1</sup>, P.-G. Chen<sup>1, 2</sup>, C.-C. Cheng<sup>1</sup>, K.-Y. Chu<sup>1</sup>, M.-J. Xie<sup>1</sup>, S.-N. Liu<sup>1</sup>, J.-W. Lee<sup>1</sup>, S.-J. Huang<sup>1</sup>, M.-H. Liao<sup>2</sup>, and M. H. Lee<sup>1,\*</sup>

<sup>1</sup>Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei, Taiwan

<sup>2</sup> Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan

\*Tel: 886-2-77346747 / Fax: 886-2-86631954 e-mail: <u>mhlee@ntnu.edu.tw</u>

#### 1. Introduction

To achieve the steep subthreshold slope transistors, the integration of tunneling transistor and negative capacitance (NC) would be an effective and possible solution [1]. Tunnel field-effect transistors (TFETs) bases on band-to-band tunneling (BTBT) operation to reach a steep subthreshold swing at subthreshold region [2-4]. Because of its small bandgap energy relative to Si, Ge could enhance the tunneling probability of TFET with high current requirements. Recently, epitaxially grown Ge (epi-Ge) p-TFETs on bulk (110) Si substrates [5] and planar p-TFETs on SOI (Si on insulator) [6] substrates have been reported. The hetero-tunnel field-effect transistor was proposed and modeled [7], demonstrating steeper switching and higher currents than conventional TFETs [8]. The concept of NC have great benefit to obtain body factor <1 to extend the steep slope region [9-12]. The NC-MOSFET structure using thin quantum well body, ie. Ultra-thin body (UTB), is calculated to suppress short-channel effects and sub-60mV/decade operation by modulation of MOS capacitance [13]. Therefore, the UTB Double gate (DG) TFET integrated with NC concept was performed in this work. The parameters of ferroelectric (FE) material thickness, body thickness and interfacial thickness is discussed for non-hysteretic behavior.

## 2. Concept and Devices Structure

The structure and band diagram of the UTB-DG-NC-TFET is designed as channel length ( $L_g$ ) 40 nm (Fig. 1). The i-Si (n<sup>-</sup>-Si) is operated at accumulation region. The typical UTB-DG- TFET was calculated with Dynamic nonlocal path band-to- band model of TCAD for BTBT. The FE material is PZT (PbZrTiO3) with the parameters (Fig. 2 (a)) for FE calculation by Landau model [14]. The key to this design is the FE thickness to modulate C<sub>FE</sub>, body thickness and interfacial thickness to adjust C<sub>MOS</sub> (Fig. 3) according to voltage amplification ratio (Fig. 2(b)). Note C<sub>MOS</sub> is calculated at accumulation region. The gain is following by the effective circuit of FE gate stack of UTB-DG (Fig. 2(c)).

## 3. Results and discussions

 $C_{FE}$  can be tuned by changing the FE thickness (T<sub>FE</sub>). For FE=160nm, there are two cross points (A & B) between MOS and FE (Fig. 3), this is indicates hysteresis behavior due to  $|C_{FE}|>C_{MOS}$ . To obtain the maximum enhancement of voltage and non-hysteresis behavior due to NC effect,  $C_{FE}$ should be matched to  $C_{MOS}$  ( $|C_{FE}|\sim C_{MOS}$ ) such as FE=153nm in this case (Fig. 3). Therefore, the corresponding transfer characteristics I<sub>D</sub>-V<sub>G</sub> shows the significantly improvement in SS and ON current (Fig. 4). Note that the  $T_{FE}$ =0nm indicates the control TFET without FE for reference. With

NC effect, the SS<sub>min</sub> is improved from 13 mV/dec to 8-5 mV/dec, and extended steep slope range (< 60mV/dec) from 8 orders to ~10 orders (Fig. 5). The  $T_{FE}=153$ nm presents the non-hysteresis and steeper slope with denoting as optimized condition. The extracted peak voltage amplification  $(A_V)$  of the optimized condition shows that ~ 35 (Fig. 6). In order to modulate  $C_{MOS}$ , the body thickness  $(T_s)$  is a critical factor and showing the body thin-down is beneficial for extending steep SS region (Fig. 7). Note that the  $T_{FE}$  is optimized thickness with steepest slope and non-hysteresis, ie.  $C_{MOS}$  ~  $|C_{FE}|$ . The SS<sub>min</sub> (~5 mV/dec) for ~ 5 order is obtained with  $T_s = 5$  nm (Fig. 8). The corresponding amplification of NC effect shows almost the same (Fig. 9), and indicates not significantly different in optimized T<sub>FE</sub> (Fig. 10). The interfacial layer thickness is another critical factor for discussion, and is set as SiO<sub>2</sub> in this work. The thin-down interfacial layer is beneficial for SS (Fig. 11), and showing  $SS_{min} \sim 6 \text{ mV/dec}$  for 4 order with  $T_{ox} = 0.3 \text{ nm}$  (Fig. 12). The negative shift in  $A_v$  peak with decreasing  $T_{OX}$  leads the steep slope in  $I_D$ -V<sub>G</sub> (Fig. 13). Therefore, the optimized thickness of  $T_{FE}$  is decreasing with thinner  $T_{ox}$  (Fig. 14). This indicates the possible PZT thickness for CMOS process integration with extreme thin  $T_{ox} \sim 0.3$ nm for non-hysteresis. The Ge TFET is beneficial for BTBT due to small bandgap, therefore, Ge UTB-DG-NC-TFET is a candidate for sub-10nm technology with steep slope (SSave ~ 18 mV/dec), high ON current (> 100  $\mu$ A/ $\mu$ m), and < 0.2V switching voltage (Fig. 15).

## 4. Conclusions

With optimizing  $T_{FE}$ ,  $T_S$ , and  $T_{ox}$ , the Ge UTB-DG-NC-TFET exhibits steep slope (SS<sub>ave</sub> ~ 18 mV/dec), high ON current (> 100  $\mu A/\mu m$ ), and < 0.2V switching voltage. The key concept of NC effect is  $C_{FE}$  matching to  $C_{MOS}$  (|CFE|~C\_{MOS}), and results smallest SS and non-hysteresis. The UTB-DG-NC-TFET is a candidate for sub-10nm technology in the future.

#### 5. Acknowledgements

The authors are very grateful for funding supporting by National Science Council (NSC 102-2221-E-003-030-MY3, 103-2622-E-002-031, and MOST 103-2221-E-003-023), and computing support by National Center for High-Performance Computing (NCHC), Taiwan.

**References:** [1] M. H. Lee et al, IEDM, 104, 2013. [2] T. Krishnamohan et al, IEDM, 947, 2008. [3] K. K. Bhuwalka et al, JJAP, 43, 4073, 2004. [4] O. M. Nayfeh et al, EDL, 29, 468, 2008. [5] M. H. Lee et al, EDL, 32, 1355, 2011. [6] K. Joen et al, VLSI Symp., 121, 2010. [7] C. Hu et al, VLSI-TSA, 14, 2008. [8] M. H. Lee et al, T-ED, 60, 2423, 2013. [9] G. A. Salvatore et al, IEDM, 167, 2008. [10] A. Rusu et al, IEDM, 395, 2010. [11] S. Salahuddin et al, IEDM, 693, 2008. [12] A. I. Khan et al, IEDM, 255, 2011. [13] C. W. Yeung et al, VLSI-TSA, 179, 2013. [14] M. J. Haun et al, Ferroelectrics, 99.1, 45, 1989.



Fig. 1. The schematic diagram of UTB-DG-NC-TFET with Lg=40nm.  $T_{FE}$ ,  $T_s$ , and  $T_{OX}$  are the thickness of ferroelectric material, body and interfacial layer, respectively.



Fig. 4. The transfer characteristics with different  $T_{FE}$ . The hysteresis behavior is occurred with  $T_{FE}$ =160nm. Note that the  $T_{FE}$ =0nm indicates the control TFET without FE for reference.



Fig. 7. The transfer characteristics with different  $T_s$ . The body thin-down is beneficial for extending steep SS region. Note that the  $T_{FE}$  is optimized thickness with steepest slope and non-hysteresis, ie.  $C_{MOS} \sim |C_{FE}|$ .



Fig. 10. The optimized  $T_{FE}$  vs.  $T_s$ . There is not significantly different in optimized  $T_{FE}$  with different  $T_s$ .



Fig. 13. The  $A_{\nu}$  with different  $T_{ox}.$  The negative shift in  $A_{\nu}$  peak with decreasing  $T_{OX}$  leads the steep slope in  $I_D\text{-}V_G$ 



Fig. 2. (a) The parameters of PZT as the FE material in this work. (b) The express of voltage amplification by NC effect. (c) The effective circuits of FE gate stack of UTB-DG.



Fig. 5. The SS vs.  $I_D$  with different  $T_{FE}$ . The  $T_{FE}$ =153nm presents the non-hysteresis and steeper slope with denoting as optimized condition.



Fig. 8. The SS vs.  $I_D$  with different  $T_s.$  The SS\_min (~ 5 mV/dec) for ~ 5 order is obtained with  $T_s=5\ nm$ 



Fig. 11. The transfer characteristics with different  $T_{ox}$ . The thin-down interfacial layer is beneficial for SS.



Fig. 14. The optimized  $T_{FE}$  vs  $T_{OX}$ . The optimized thickness of  $T_{FE}$  is decreasing with thinner  $T_{ox}$ . This indicates the possible PZT thickness for CMOS process integration with extreme thin  $T_{ox} \sim 0.3 nm$  for non-hysteresis.



Fig. 3. The Q-C characteristics with different  $T_{FE}.$  The optimum condition is  $T_{FE}{=}153nm$  for minimum SS and non-hysteresis.



Fig. 6. The voltage amplification  $(A_v)$  with different  $T_{FE}$ . The extracted peak  $A_V$  of the optimized condition shows that ~ 35.



Fig. 9. The  $A_v$  with different  $T_s$ . The corresponding amplification of NC effect shows almost the same with different  $T_s$ .



Fig. 12. The SS vs. I<sub>D</sub> with different  $T_{ox}$ . It shows SS<sub>min</sub> ~ 6 mV/dec for 4 order with  $T_{ox} = 0.3$  nm.



Fig. 15. The Ge TFET is beneficial for BTBT due to small bandgap, therefore, Ge UTB-DG-NC-TFET is a candidate for sub-10nm technology with steep slope (SS<sub>ave</sub> ~ 18 mV/dec), high ON current (> 100  $\mu$ A/ $\mu$ m), and < 0.2V switching voltage.