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Abstract 
For a system where electrons and holes co-exist, we 

establish the theory that takes into account the non-
parabolicity only for the conduction band of the InAs 
channel layer in strained InAs-HEMTs (InAs-PHEMTs). 
This theory enables us to rigorously determine not only 
the energy states and the concentration profiles for both 
carriers but the shift of the threshold voltage of 
PHEMTs due to the holes accumulate in the channel. 
The calculation is made by solving the Schrödinger and 
Poisson equations self-consistently for both carriers. 
 
1. Introduction 

High-electron-mobility transistors with a pseudomor-
phically strained InAs channel (InAs-PHEMTs) have at-
tracted much attention because of their high-speed opera-
tion and their applicability to high-speed ICs.1) We have 
recently used an energy-dependent effective mass to calcu-
late the energy states of the two-dimensional electron gas 
(2DEG) in the InAs channel of InAs-PHEMTs.2,3) The pur-
pose of this paper is to provide the theory describing the 
2DEG and the two-dimensional hole gas (2DHG) energy 
states required for understanding characteristics of 
InAs-PHEMTs. In this theory the nonparabolic relation 
between the energy and the wavenumber was taken into 
account for the conduction band, but the parabolic relation 
was taken into account for the valence band. 
 
2. Analytical method 

We chose the z-direction perpendicular to the quan-
tum-well plane. For the conduction band, the nonparabolic 
dependence of the energy E on the wavenumber vector k is 
taken into account by defining the following ener-
gy-dependent effective mass based on the k·p perturbation 
theory:  ( ) ( ) ( ) ( )( )* *, 1 , (1)  ccm z E m z z E E zα = + −   
where z is the distance from the surface, mc*(z) is the effec-
tive mass at the bottom of the conduction band, and Ec(z) is 
the conduction band energy. In addition, α(z) is a nonpara-
bolicity parameter equal to 1/Eg, Eg being the bandgap en-
ergy of the channel. The analytical method and equations 
for electrons is described in detail elsewhere.2) For the va-
lence band, both heavy hole (hh) and light hole (lh) are 
taken into account in the following calculation. Also, the 
parabolic dependence of E on k for holes is for simplicity 
assumed to be isotropic. As a result, the Schrödinger equa-
tions for electrons and holes in the nth subband are ex-
pressed as follows: 

 
 
 
 
 
 

(electrons) (2) 
and 

           

 
                            (holes∶i=hh,lh)  (3) 

where Enk and Ψnk(z) represent the energy and the wave-
function of electrons, respectively, and where Eni, Ψni, Evi(z), 
and mi(z) are the energy, wavefunction, valence-band en-
ergy, and effective mass of holes. The Schrödinger equa-
tion (2) for electrons was solved using a standard perturba-
tion theory approach. That is, we regarded the terms in-
cluding α as the perturbed Hamiltonian and regarded the 
rest of the terms as the unperturbed Hamiltonian.2) The 
electron density is provided by the following equation: 2) 
 
                  (electron) (4) 
 
 
where ρn(E) is the density of states and EFe is the qua-
si-Fermi energy for electrons. The heavy-hole and 
light-hole densities are given by 
 
 
 

(holes∶i=hh,lh)  (5) 
where EFh is the quasi-Fermi energy for holes. 

Using the distribution profiles for both carriers, we can 
estimate the exchange-correlation energy included in the 
Schrödinger Eqs. (2) and (3).2,4) By letting φ(z) be the elec-
trostatic potential, the Poisson equation is written as 

 
 
where ε(z) is the dielectric constant, ND

+(z) the ionized do-
nor density, n(z) the electron density, and p(z) = phh(z) + 
plh(z) the hole density. The potential energies Ec(z) in Eq. 
(2) and Evi(z) in Eq. (3) were estimated using φ(z) in addi-
tion to the exchange-correlation and the band discontinui-
ty.2,4) 

 
3. Results and discussion 

The cross section of PHEMTs assumed in the 
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calculation of quantum states for InAs PHEMTs, which 
corresponds to that of an InAs PHEMT reported in Ref. 1, 
is shown schematically in Fig. 1. The epitaxial layers con-
sist of an undoped InAlAs layer, an undoped 
InxGa1-xAs/InAs/InxGa1-xAs composite channel layer (10 
nm), and an InAlAs barrier layer with a Si-doping density 
of 2 x 1012 cm-2 (4 nm).  

Figure 2(a) is the energy band diagram for the conduc-
tion band and the carrier concentration of 2DEG at a 
gate-to-source voltage VGS of 0 V for the case where ps is 
zero. Here the sheet electron density of 2DEG, ns0, in ps= 0 
is 3.0×1012 cm−2. The surface potential energy was set to 
0.655 eV, which corresponds to a VGS of 0 V. The EFe lies 
near the 2nd subband energy because of the high doping 
level and the large conduction band discontinuity ∆Ec 
(about 0.74 eV). Figure 2(b) shows the energy band dia-
gram for the conduction and valence bands as well as the 
carrier concentrations of 2DEG and 2DHG for the case 
where ps was 2.0×1012 cm−2 comparable to the ns0 of 2DEG. 
As a result, ns is increased to 5.0×1012 cm−2 (ns=ns0 +ps) 
because of the effect of the hole accumulation. The EFe is 
measured from the bottom of the conduction band on the 
surface side of the InAs channel. The EFe is larger than that 
for ps= 0 by ∆EFe = 0.04 eV, where ∆EFe is defined as the 
shift of EFe due to an increase in the electron concentration. 
This implies that the threshold voltage VTH of PHEMT 
shifts by ∆EFe because of the effect of the hole accumula-
tion. Figure 3 shows the ps dependence of ∆VTH; where 
∆VTH varies in proportion with ps in a lower ps region. This 
result is consistent with the so-called photo-voltaic effect 
observed in solar-cells. Their open-circuit voltage is known 

to increase logarithmically with the irradiated optical power. 
Our theory may explain the dependence of ∆VTH on the 
irradiated optical power in InAs-PHEMTs.4) In this way, 
for a system where electrons and holes co-exist, 
self-consistently solving the Schrödinger and Poisson equa-
tions for both carriers enabled us to rigorously determine 
not only the energy states and the concentration profiles for 
both carriers but the shift of VTH of PHEMT due to the 
holes accumulated in the channel as a function of ps. 
 
4. Conclusions 
In summary, for a system where electrons and holes 
co-exist, we established the theory that takes into account 
the nonparabolicity only for the conduction band of the 
InAs channel layer. This theory enables us to rigorously 
determine not only the energy states and the concentration 
profiles for both carriers but the shift of VTH of PHEMT due 
to the holes accumulated in the channel. The calculation 
was made by solving the Schrödinger and Poisson equa-
tions self-consistently for both carriers. 
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Figure 1: Schematic cross section of 

pseudomorphically strained InAs 

HEMTs assumed in the calculation.  
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Figure 2: (a) Energy band diagram in-

source region for conduction band and 

carrier concentration of 2DEG (ps=0); 

(b) Energy band diagram insource region 

for conduction and valence bands and 

carrier concentrations of 2DEG and 

2DHG for ps=2.01×1012 cm−2. 

 

Figure 3: ps dependence of the VTH 

shift of HEMTs. 
(b) 
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