Effect of Temperature on DC and RF Characteristics of Cryogenic InP HEMTs

Akira Endoh^{1,2}, Issei Watanabe¹, Akifumi Kasamatsu¹, Tsuyoshi Takahashi², Shoichi Shiba², Yasuhiro Nakasha², Taisuke Iwai² and Takashi Mimura^{1,2}

¹ National Institute of Information and Communications Technology (NICT) 4-2-1 Nukui-kitamachi, Koganei, Tokyo 184-8795, Japan Phone: +81-42-327-7256 E-mail: aendoh@nict.go.jp

² Fujitsu Laboratories Ltd.

10-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0197, Japan

E-mail: aendoh@jp.fujitsu.com

Abstract

We measured the DC and RF characteristics of InP-based 75-nm-gate InAlAs/InGaAs HEMTs at 300, 220, 150, 100, 77 and 16 K. Cutoff frequency $f_{\rm T}$ and maximum oscillation frequency $f_{\rm max}$ increase with decreasing temperature. The increase of $f_{\rm max}$ with decreasing temperature is more than that of $f_{\rm T}$. The $f_{\rm max}$ largely increases between 150 and 100 K. Furthermore, the increase of $f_{\rm T}$ and $f_{\rm max}$ values is very small between 77 and 16 K.

1. Introduction

InP-based InAlAs/InGaAs HEMTs are one of the best devices for cryogenic low-noise amplifiers (LNAs) [1]. Operating the InP HEMTs cryogenically can improve their DC and RF performance levels due to the suppression of phonon scatterings [2]. In our previous works, we measured the DC and RF characteristics of 30-nm-gate InP HEMT at 300, 77 and 16 K [3] and gate length L_g dependence of the DC and RF characteristics at 300 and 16 K [4].

In this work, we measured the DC and RF characteristics of 75-nm-gate InP HEMTs at 300, 220, 150, 100, 77 and 16 K. We clarified the effect of temperature on improvement of DC and RF performance.

2. Experiments

On-wafer DC and RF measurements were carried out at 300, 220, 150, 100, 77 and 16 K. Cryogenic temperature measurements were carried out using a specially designed cryogenic probing system consisting of a vacuum chamber, a helium-gas closed cycle cryostat and probes. The S-parameters were measured in the frequency range from 0.25 to 50 GHz in 0.25 GHz steps using an HP8510C vector network analyzer and on-wafer probes from Picoprobe. Cutoff frequency $f_{\rm T}$ values were obtained by the extrapolation of the current gain $|h_{21}|^2$ with a slope of -20 dB/decade in the frequency range from 20 to 50 GHz. On the other hand, maximum oscillation frequency $f_{\rm max}$ values were obtained by the extrapolation of Mason's unilateral power gain $U_{\rm g}$ from 30 to 50 GHz.

3. Results and Discussion

Figure 1 shows the current-voltage (I-V) characteristics

of a 75-nm-gate HEMT at 300 and 16 K. This HEMT showed good pinch-off characteristics. Note that good pinch-off behaviors were observed at all the measured temperatures. The kink phenomenon was seen in the *I-V* characteristics at 16 K. Figure 2 shows the gate-source voltage $V_{\rm gs}$ dependence of drain-source current $I_{\rm ds}$ and transconductance $g_{\rm m}$. The $I_{\rm ds}$ decreases with decreasing temperature. On the other hand, the maximum $g_{\rm m}$ increases with decreasing temperature from 300 to 77 K. The decrease in $g_{\rm m}$ at 16 K results from the kink phenomenon.

Fig. 1 Current-voltage (I-V) characteristics of 75-nm-gate HEMT at 300 and 16 K.

Fig. 2 Gate-source voltage V_{gs} dependence of drain-source current I_{ds} and transconductance g_m under drain-source voltage V_{ds} of 0.8 V at 300, 220, 150, 100, 77 and 16 K.

Fig. 3 Drain-source current I_{ds} dependence of cutoff frequency f_T under drain-source voltage V_{ds} of 0.8 V at 300, 220, 150, 100, 77 and 16 K.

Fig. 4 Drain-source current I_{ds} dependence of maximum oscillation frequency f_{max} under drain-source voltage V_{ds} of 0.8 V at 300, 220, 150, 100, 77 and 16 K.

Figure 3 shows the I_{ds} dependence of f_T under a V_{ds} of 0.8 V. The $f_{\rm T}$ value gradually increases with decreasing temperature between 300 and 77 K. The increase of $f_{\rm T}$ value is very small between 77 and 16 K. Figure 4 shows the I_{ds} dependence of f_{max} under a V_{ds} of 0.8 V. The f_{max} value also increases with decreasing temperature. Here, the $f_{\rm max}$ largely increases between 150 and 100 K. On the other hand, the increase of f_{max} value is very small between 77 and 16 K. This phenomenon is the same as that of $f_{\rm T}$. Figure 5 shows the temperature dependence of the peak $f_{\rm T}$ value under $V_{\rm ds}$ of 0.6, 0.8 and 1.0 V. The increase of the peak $f_{\rm T}$ is large between 300 and 77 K. Below 77 K, the increase of the peak $f_{\rm T}$ is very small. Figure 6 shows the temperature dependence of the peak f_{max} under V_{ds} of 0.6, 0.8 and 1.0 V. The peak f_{max} value increases between 300 and 77 K. Especially, the large increase of the peak f_{max} is seen between 150 and 100 K. On the other hand, the increase of the peak $f_{\rm max}$ is very small below 77 K, which is the same phenomenon as that of the peak $f_{\rm T}$.

4. Conclusions

In conclusion, we measured the DC and RF characteris-

Fig. 5 Temperature dependence of peak cutoff frequency $f_{\rm T}$ under drain-source voltage $V_{\rm ds}$ of 0.6, 0.8 and 1.0 V.

Fig. 6 Temperature dependence of peak maximum oscillation frequency f_{max} under drain-source voltage V_{ds} of 0.6, 0.8 and 1.0 V.

tics of 75-nm-gate InP HEMTs at 300, 220, 150, 100, 77 and 16 K and clarified the effect of temperature on improvement of DC and RF performance. The maximum g_m increases with decreasing temperature between 300 and 77 K. At 16 K, the decrease in g_m is seen, which results from the kink phenomenon. The f_T and f_{max} values increase with decreasing temperature. The increase of f_{max} is more than that of f_T . The f_{max} largely increases between 150 and 100 K. Furthermore, the increase of f_T and f_{max} values is very small between 77 and 16 K.

References

- J. Schleeh, G. Alestig, J. Halonen, A. Malmros, B. Nilsson, P.-A. Nilsson, J. P. Starski, N. Wadefalk, H. Zirath and J. Grahn, IEEE Electron Device Lett. 33 (2012) 664.
- [2] A. Endoh, I. Watanabe, K. Shinohara, Y. Awano, K. Hikosaka, T. Matsui, S. Hiyamizu and T. Mimura, Jpn. J. Appl. Phys. 49 (2010) 114301.
- [3] A. Endoh, K. Shinohara, I. Watanabe, T. Mimura and T. Matsui, IEEE Electron Device Lett. 30 (2009) 1024.
- [4] A. Endoh, I. Watanabe, T. Mimura and T. Matsui, Electron. Lett. 49 (2013) 217.