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Abstract 

Stackable 4 nm ultra-thin body (UTB) FinFETs 

using chemical vapor deposition (CVD) deposited 

molybdenum disulfide (MoS2) channels were devel-

oped through fully complementary metal oxide semi-

conductor compatible process technology. Adding sev-

eral molecular layers (approximately 7 X) of the tran-

sition metal dichalogenide (TMD) MoS2 on the back-

gate Si fin resulted in improved n of the Si-based 

FinFETs. The MoS2 UTB FinFETs also represent a 

means of providing FinFETs with a new feature, 

namely strong back-bias control of threshold voltage 

(Vth). The novel TMD channels produced through the 

solid CVD method were a promising technology for 

low-power and scaled FinFETs in 2D and 3D ICs.  

1. Introduction 

3DFETs can improve sub-20 nm complementary metal-

oxide semiconductor (CMOS) node performance and sub-

stantially reduce supply voltage and short channel effects [1]. 

However, the traditional silicon channel must be replaced by 

high mobility materials in future VLSI applications [2,3]. 

Heterogeneous 2D atomic crystals such as transition metal 

dichalcogenide (TMD) have atomically smooth surfaces 

without dangling bounds and favorable mobility in chemical 

vapor deposition (CVD) deposited films of atomic-scale 

thickness. They are attractive enablers of ultimately scaled 

transistors and 3D ICs [1,4]. However, a manufacturing flow 

must be realized using low temperature semiconductor pro-

cesses [5] and TMD through CVD [6]. This paper presents a 

CMOS process compatible TMD 3D transistor technology 

using novel molybdenum disulfide (MoS2) channel FinFETs 

with improved electron mobility (n) of the N devices.  

Channel materials such as Si, Ge, and III-V typ-

ically face process, mobility, or quantum capacitance 

challenges at ultra-thin body (UTB) thicknesses [3]. 

Advanced 2D TMD is an ideal channel material for 

its unique sub-nm monolayer UTB [7] potential and 

effective transport property at nm thinness [4]. CVD 

of TMD is compatible with CMOS process integration 

[6] and suitable for UTB formation [8]. This paper 

presents a 4 nm thin MoS2 body FinFETs that has 

dynamically adjustable threshold voltage (Vth) with 

back-bias control [9] for low-power CMOS technology 

applications [10]. In comparison to previously pub-

lished advanced transistors, this work reports the 

largest width and footprint, excellent back gate con-

trol, and high scaling ability in low-nm VLSI technol-

ogy [11,12] (Table 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Results and Discussions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE I 

COMPARISON OF BULK FINFETS, UTBSOI/ FDSOI AND TMD FINFETS. 

 

Bulk FinFET UTBSOI/ FDSOI TMD FinFET

body formation etching bonding CVD

W/footprint

ratio
large regular large

back gate

control
poor good excellect

scaling ability

(node)

very good

(> 5 nm)

good

(> 10 nm)

excellent

(> 2 nm)

 

 

 
Fig. 1 (a) Growth of MoS2 film by CVD. Photo image of uniform few-layer 
MoS2 film on oxide coated wafer (b) Raman and (c) PL spectra of the CVD 

few-layer MoS2 film. 
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Fig. 3 (a) Gate bias sweeping and (b) calculated field-effect nobilities for the 

MoS2 FinFETs. 
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This study applied previously published low tempera-

ture 3DFETs technology [13]. A minimal-layer MoS2 growth 

step was inserted after blocking oxide deposition and clean-

ing. Minimal-layer MoS2 was successfully integrated into 

3DFETs technology through low-temperature CVD and opti-

mum treatment with the number of MoS2 layers.  

A. MoS2 Growth by CVD 

The MoS2 CVD process is illustrated in Fig. 1(a). 

High-quality monolayer MoS2 films can be grown on 

a blocking oxide-coated flat wafer surface. In Figs. 2(b) 

and (c), Raman and photoluminescence spectra con-

firm the high quality of the few-layer MoS2 films 

grown by the advanced CVD. In Fig. 2, the TEM im-

age shows the 6-layer (4 nm) MoS2 body channels 

grown over the back-gate Si fin surface with perfect 

continuous coverage. After high-k metal gate deposi-

tion, a 30 nm long front gate is formed using our nano 

injection lithography (NIL) technique [8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. MoS2 FinFETs Characteristics 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 shows the transfer and output character-

istics of MoS2 FinFETs with a 30 nm gate length and 

6-layer (4 nm) MoS2 body. The front-gate MoS2 Fin-

FETs device has an on/off ratio larger than 106 and 

Ion of approximately 200 μA/μm for 0.1 volt operation 

bias. The 4 nm MoS2 FinFETs can operate with back-

gate bias alone in 2 nm thin BGO (Fig. 4); however, 

the main purpose of the back gate is to adjust the 

front Vth of the MoS2 FinFETs as shown in Fig. 4. A 

back-gate bias can thus correct device variations or 

dynamically configure a device as a high-perfor-

mance or low energy consumption device to achieve 

higher speed and lower power applications. The 2 nm 

thin BGO greatly enhances the Vth sensitivity to 

back-gate bias in comparison to a thick BGO. The 4 

nm thin body and back-gate control MoS2 FinFETs 

yields a record high Ion performance in MoS2 devices 
[14,15]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Conclusions 

In this study, a 4 nm MoS2 UTB FinFETs with 

back-gate control is proposed and demonstrated for 

the first time. The MoS2 FinFETs channel was depos-

ited using a CVD fully CMOS-compatible process. 

The n of the MoS2 FinFETs is improved by more than 

2 times compared with Si-based FinFETs. The 2 nm 

thin back-gate oxide enables 0.5 V of Vth shift with a 

1.2 V change in back bias of the MoS2 UTB FinFETs. 

This stackable MoS2 FinFETs using solid CVD can be 

fully integrated in current VLSI process technology. 
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Fig. 2. The TEM image of MoS2 body on MoS2 FinFETs with Si back gate. 

Front gate HKMG is to be deposited. 
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Fig. 4. Thin back-gate oxide enhances Vth sensitivity to back-gate bias. Inset 

shows back-gate bias control with TBGO (2 nm). 
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