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Abstract 

This paper focuses on brain-inspired hardware for 

energy efficient cognitive computing using analog 

resistive memories as synaptic arrays. Resistive 

memories are superior to its counterparts in terms of 

area and system-level energy consumption. Through 

experimental measurements, we illustrate the need for 

algorithm-device co-design for energy efficient 

inter-array communication as well as accurate compact 

models that capture analog conductance change to meet 

the challenges of scaling up in system size. 

  

1. Introduction 

As the amount of data that is generated increases 

exponentially in the new era of smart consumer products 

(smart phones, etc) and internet-of-things (IoT), scalable 

solutions for energy efficient information extraction from 

huge amounts of data are required. In a wide range of 

mobile devices that have a power budget from high-end 

smartphones [1] to low end IoT front end sensor devices 

[2,3]; power consumption due to connectivity/data 

transmission dominates the overall power consumption. 

These applications require feature extraction, data 

compression, and data processing in the front end device, in 

order to reduce the amount of data transmitted to back end 

platform for further processing with little to no information 

loss; as well as for rapid real-time response. Since such 

algorithms can easily become computationally and 

energetically expensive, careful customization of hardware 

is needed in the front-end sensor device. For such hardware, 

memory systems (on-chip or off-chip memory) can consume 

from 25 to 60% of power of the application SoC (not 

including radio), emphasizing the importance of memory 

technology in front-end devices [1-3]. 

Further processing of data aggregated from sensor nodes 

requires significant amounts of computational power and is 

typically implemented on cloud-based platforms. Deep 

neural networks, which have shown promise for extracting 

information from big amounts of data, are currently trained 

on conventional hardware such as CPUs [4,5] or GPUs [6-8]. 

However, such large-scale systems can easily consume 100s 

of kWs of power during training, mainly due to moving big 

amounts of data between massive amounts of off-chip 

memories and thousands of processors [4,5]. For 

data-intensive tasks, energy consumption due to memory 

accesses are > 40% of the overall system energy [9]. Scaling 

up these systems for energy efficient (deep) learning and 

data mining requires careful hardware customization 

combined with low-energy memory technologies that are 

scalable in size and that can enable 3-dimensional 

monolithic integration for fast and energy efficient on-chip 

memory.  

2. Brain-inspired hardware 

Brain inspired hardware is a class of hardware that is 

intended to implement brain-inspired algorithms under 2 

classes: 1) biology based network models and learning rules 

and 2) artificial neural networks that are inspired by the 

biological brain to some extent, but do not strictly mimic the 

brain. Hardware customization with conventional CMOS 

technologies for some brain-inspired algorithms has already 

proved to be low power for training or inference tasks 

[10-12]. Brain-inspired hardware aims to realize the real- 

time processing power and energy efficiency of biological 

brain, and gets inspirations from real brain in terms of 

connectivity, processing, and/or communication schemes on 

the device, circuit, and architecture level. Because the 

number of synapses in neural networks is way larger than 

the number of neurons and scales quadratically, 

implementation of synaptic weights (memories) deserves 

special attention. Resistive memory technologies such as 

resistive metal oxide memory (RRAM) [13], phase change 

memory (PCM) [14], and conductive bridge memory 

(CBRAM) [15] offer significant advantages compared to 

their conventional counterparts such as SRAM or DRAM: 

low switching energy, excellent size-scalability, monolithic 

3-D integration and analog programmability. Brain-inspired 

(neuromorphic) architectures with analog resistive memory 

can benefit from all these characteristics of emerging 

memories. This type of hardware utilize analog 

programmability of resistive memories for implementing 

synaptic weights, both for realizing biologically realistic 

networks such as Hopfield network [16]; as well as artificial 

neural networks such as feedforward network [17], restricted 

Boltzmann machine [18], and convolutional kernel [19]. 

Here, we review the device requirements and design 

considerations for brain-inspired hardware with analog 

resistive synapses. 

3. Design considerations for brain-inspired hardware 

with analog resistive synapses 

Device level considerations 

It is worth noting that to determine the requisite memory 

characteristics for a given application or learning algorithm, 

analysis should be performed with accurate device models 

that can capture cycle-to-cycle variations, device-to-device 

variations, nonlinearities in weight update; while also 

considering the noise in the available data, and the accuracy 

needed for the application. We study algorithm-device 

interaction for a restricted Boltzmann machine (RBM) with 
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one hidden layer, with MNIST digit recognition as the task 

in hand. RRAM model used is adapted from [20], and is 

calibrated with experimental data. Gradual resistance change 

(gradual RESET) of resistive device is shown in Fig. 1(a). 

Note that for this particular device, gradual resistance 

change occurs in one direction; whereas in SET direction, 

resistance changes abruptly. To overcome this problem, a 

differential weight encoding scheme is used [21]. Fig. 1(b) 

shows the relation between the programming voltage and 

test error for MNIST digit data. Programming voltage 

determines 1) conductance change for a single gradual 

RESET pulse (averaged over cycles), and 2) cycle-to-cycle 

variations; both of which affect the classification error for 

MNIST test set after training. We observe that 

device-to-device variations are tolerated during training to 

the extent of the accuracy of gradual weight increments.       

Array and system level considerations 

Brain-inspired algorithms mentioned earlier in this work 

typically require network architectures with 1000-10000 

fan-out. Two major components of energy consumption 

within synaptic arrays are 1) wire energy (CV2) and 2) 

programming energy (V2tpulsewidth/R). Wire energy begin to 

dominate array level energy consumption in 1k×1k arrays 

(few pJs), and constitute a larger fraction as the array gets 

bigger. Energy consumption analysis on array level for the 

case study presented above is shown in Fig. 2(a). Higher 

average energy/epoch at the beginning of the training is due 

to the initial SET programming of all devices. As training 

progresses, devices are reprogrammed with gradual RESET 

pulses; and the effect of initial SET state diminishes after 50 

epochs. Both device energy and wire energy scales 

quadratically with programming voltage, hence low voltage 

programming is desired for lower energy consumption. 

Array size should be determined with the following 

considerations in mind: 1) communication overhead (latency 

and energy) for using multiple smaller arrays, 2) wire 

energy within large, arrays 3) IR drop within large arrays, 4) 

connectivity/fan-out of network architecture [22].  

4. Open research questions 

Rapid progress is being made in this field. Some of the open 

research problems and needs for the field are listed below:  

 Beyond demonstration of functionality, application level 

benchmarking is needed for fully integrated brain-inspired 

hardware with resistive synaptic arrays. Quantities of 

interest can be performance per power, performance per 

area, or how reliable the system is to the variability of a 

given memory technology. 

 Scalable solutions for communicating between arrays are 

needed for scaling up in system size and achieving high 

fan-outs needed for brain-inspired computing. Hierarchical 

connectivity should be explored [23] for energy efficiency; 

since it is analogous to the connectivity of biological brain, 

where connections are locally dense and globally sparse 

[23]. 

 Low voltage memory devices should be explored, since 

both wire and programming energy scales quadratically 

with programming voltage during training 

 Biologically realistic (spiking) networks allow continuous 

real time online learning [24]; however, more research is 

needed to identify problems that can efficiently be solved 

by STDP. So far, RBM and S2M (synaptic sampling 

machine) are 2 problems where STDP excel at [24,25], but 

it is still in its infancy compared to commonly used 

backpropagation. 

 Algorithm-device co-design is needed to identify what 

device characteristics are important for different 

applications. Device models that can accurately model the 

statistics of gradual conductance change are needed. 

 Monolithic 3D integration under low temperature is 

required for the future synaptic device technologies. 
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Fig. 1 (a) Gradual resistance change in RRAM for different pro-

gramming voltages (b) effect of programming voltage on learning 

performance. μ refers to average log-conductance change for one 

pulse, σ refers to standard variation of fluctuations of 

log-conductance change around a smooth fit over a cycle.  
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Fig. 2 (a) Energy consumption within RRAM and wires (b) 

Quadratic dependence of energy on V compared with linear curve.  
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