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Abstract 

Although different neuron models have been pro-

posed so far, basic neuron models are commonly ex-

pressed by differential equations about the internal po-

tential of a neuron. Since using capacitors to store inter-

nal potentials is a natural circuit implementation of these 

models, analog VLSI implementation is suitable for them. 

As neuro-inspired time-domain computing, we have im-

plemented various types of processing models in which 

spike-based computations are performed during a ca-

pacitor charging operation. We review in this paper 

these models and their analog VLSI implementations. 

Requirements for novel devices to apply such imple-

mentations are also addressed. 

 

1. Introduction 

In spiking neural network models, neurons interact with 

each other via synapses with asynchronous spike pulses [1]. 

Each neuron has its analog internal potential, which is up-

dated by the responses generated by input spikes. As VLSI 

implementation of these models, it is natural to use a capac-

itor to store the internal potential and to update it by current 

sources connected with the capacitor. Output spike pulses 

are created by thresholding the internal potential with a 

comparator. Connections between neurons are expressed by 

synaptic weights, and analog memory devices are being de-

veloped for storing and modifying the weights by learning 

algorithms in artificial neural network models. 

In this paper some neuro-inspired time-domain compu-

ting models and their VLSI implementations are reviewed. 

 

2. Circuits and devices for time-domain computing 

The basic circuit configuration for time-domain compu-

ting is shown in Fig. 1. In digital VLSI implementation, an 

up/down counter is usually used to store and update the in-

ternal potential of a neuron [2], in which digital circuits have 

to operate at each update timing synchronizing with a clock 

signal. This operation is inefficient and increases power 

consumption.  

On the other hand, in the analog VLSI implementation, 

we use a capacitor charged with current sources switched by 

spike pulses. To guarantee the calculation precision or reso-

lution in the time domain, the operation time range should 

be set on the order of 1 s. Although this speed is 1,000 

times slower than that of the current digital circuits, mas-

sively parallel processing in analog VLSI implementation 

can overcome this slow speed. Furthermore, parallel pro-

cessing during a single charging operation to a capacitor can 

lead to higher performance and dramatically lower power 

operation compared to state-of-the-art digital VLSI imple-

mentation. For example, if we use a 10-fF capacitor with a 

0.1-nA current source at 1-V supply voltage, an energy 

consumption of 10 fJ is achieved.  

Although the gate capacitance of a current FinFET is less 

than 1fF [3], parasitic capacitance related to interconnection 

is comparable to this value. Therefore, reduction of such 

parasitic capacitance is a challenge to achieve extremely low 

power consumption operation. It is also a challenge to flow 

a sub-nA order current with low device variation or to fab-

ricate a high resistance on the order of more than 1 G. We 

have succeeded in fabricating nanodisk array structures that 

can realize resistance of more than 1 G using new fabrica-

tion technology that combines bio-nanotemplates and neu-

tral beam etching [3]. 

It is also a big challenge to develop nonvolatile analog 

memory devices not only for realizing learning mechanisms 

that mean updating the connections between neurons but 

also for compensating timing variations due to device mis-

matches and/or timing delay due to parasitic capacitance. 

 

3. Neuro-inspired time-domain processing models and 

their VLSI implementations 

We have been developing neuro-inspired circuits and 

analog VLSI chips based on time-domain computing. Some 

examples are briefly reviewed as follows. 

Integrate-and-fire neuron for weighted-sum calculation 

Weighted-sum calculation is an essential function for in-

telligent processing. A method to perform this calculation 

based on a spiking neuron model was proposed [4], and we 

have proposed and demonstrated its implementation based 

on time-domain computing using a nanodevice [3].  Linear 

response rising at input spike timing is assumed and 

time-domain summation is achieved, as shown in Fig. 2. 

Pulse-coupled oscillator systems for coupled Markov ran-

dom field (MRF) models 

In a period of oscillation in the internal potential from 

0 to 2, a small modification is performed by the value of 

the coupling function Z at the timing of a spike spk from 

another neuron, as shown in Fig. 3. Since at this timing, the 

internal potential value of the neuron sending a spike is zero, 

the value of the coupling function of the difference between 

the internal potential values of the interacted neurons is 

added to the internal potential. Using this property, we have 

successfully implemented the coupled MRF model in the 

time domain [5]. 
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Oscillator-based chaotic Boltzmann machines 

The chaotic Boltzmann machines (CBMs) are a model 

operating chaotically and can be replaced with the original 

Boltzmann machines (BMs) that operate stochastically [6]. 

In the VLSI implementation of BMs, we have to incorporate 

random number generators for original BMs, but CBMs can 

be implemented in analog VLSI circuits based on an oscil-

lator model operating deterministically. In the dynamics of 

CBMs, the internal potential change is modified when the 

weighted sum of other neurons’ states changes, as shown in 

Fig. 4. 

 

4. Conclusions 

   Neuro-inspired time-domain computing is basically 

suitable for extremely low power operation because multiple 

calculations can be achieved in a single charging operation 

to a capacitor. The challenges are the development of circuit 

elements with high precision such as current sources with a 

current of sub-nA or high resistance with more than 1 G. 

Novel analog memory devices are also desired to compen-

sate for variation of the circuit elements as well as to im-

plement learning function. 
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Fig. 1 Circuit configuration for time-domain computing: (a) digital 

approach and (b) analog approach. 

Fig. 2 Integrate-and-fire neuron for weighted-sum calculation:  

(a) timing diagram, (b) circuit configuration, and (c) algorithm. 

 

Fig. 3 Pulse-coupled oscillator systems for coupled MRF models: 

(a) positive update, (b) negative update, (c) oscillator circuit, and 

(d) dynamics of a coupled MRF model, which has two variables f 

and  as , and four coupling functions A, B, C, and S as Z. 

 

Fig. 4 Oscillator-based chaotic Boltzmann machines: (a) timing 

diagram, (b) circuit configuration, and (c) dynamics. 
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