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Abstract 

The impact of LRS and HRS RRAM variability on the clas-

sification rates of fully unsupervised Spiking Neural Networks 

is studied. An increased performance of 5-15% has been 

achieved assuming an increased LRS variability for two inde-

pendent applications. HRS variability is found to slightly reduce 

network performances. 

 

1. Introduction 

Several studies among the last decade have demonstrated the 

potential of non-von-Neumann computing paradigms for the analy-

sis of vast amounts of complex data. Therefore, so-called neuromor-

phic (brain-inspired) networks are designed specifically for certain 

applications and mostly simulated using conventional computers. 

Physical implementations of spiking neural networks (SNN) are ur-

gently needed to achieve the next level of computing in the Big Data 

era. Synapse implementations will play a key role in this regard as 

they typically outnumber the neurons of an SNN. Requirements such 

as high integration density, CMOS process compatibility, low power 

and high lifetime caused resistive RAM (RRAM) to be one of the 

main candidates. An inherent drawback of RRAM is its variability. 

We previously demonstrated that RRAM based SNN’s based on off-

line supervised learning using a back propagation algorithm are 

strongly tolerant to resistance variability [1].  

In this paper, we study the impact of RRAM variability on 

SNN’s using on-line unsupervised learning, where the RRAM re-

sistance status (synaptic weight) is tuned in-situ using probabilistic 

Spike-Timing-Dependent-Plasticity (STDP) [2]. STDP allows 

learning the synaptic weight in an unsupervised way and it is partic-

ularly useful when the input data is not known a priori. General 

guidelines for the design of hardware oriented neuromorphic circuits 

are extracted. 

2. Experimental 

1T-1R RRAM [3] devices, integrated in standard 65nm CMOS 

technology, were used for this study (Fig.1). Fig.2 shows the exper-

imental distributions of Low Resistive State (LRS) and High Resis-

tive State (HRS) varying the current compliance during the forming 

and set operations (CC). As CC is reduced, for both LRS and HRS 

distributions, the variability increases, while the mean value is 

shifted to higher values. The advantage of a low CC is the reduced 

power consumption (PC) during programming (Fig.3) and reading 

(higher LRS and HRS). Moreover, it allows for low current design. 

The drawback is the reduced resistance window (RW) between LRS 

and HRS due to enhanced variability. HRS can be slightly shifted up 

by higher reset voltages (VR), rising the RW [4], however inducing 

degradation in the oxide leading to much higher failure rates with 

respect to lower VR (Fig.4). Up to 1G cycles can be achieved using 

optimized VR (Fig.5). Good endurance is a fundamental requirement 

for networks using STDP learning, especially when the input data is 

not known a priori and therefore the network is in permanent learn-

ing mode, i.e. rapidly increasing the number of set and reset events 

to adapt the synaptic weights. 

3. System-level SNN simulations 

Two SNN’s featuring simplified probabilistic STDP and RRAM 

based synapses were used for a systematic study of the impact of 

RRAM variability on the classification rates. Simulations are per-

formed using a special purpose event-driven simulator ‘Xnet’ [5].  

(i) Fig.6 shows the SNN simulated to process temporally encoded 

video data, recorded directly from an artificial silicon retina [6]. A 

video of cars passing on a freeway recorded in Address Event Rep-

resentation (AER) format is presented to a two-layered SNN. In each 

layer, every input is connected to every output by a single RRAM 

synapse [7]. To study the impact of the LRS and HRS variability, 

the synapses are modeled assuming different RRAM test cases 

(Fig.7): high LRS variability, high HRS variability (C1), low LRS 

variability, high HRS variability (C2), no LRS variability, no HRS 

variability (ideal binary device, C3) and high LRS variability, low 

HRS variability (C4). The test case C4 allows to achieve the highest 

overall Recognition Rate (RR) (Fig.8(a)) which can be attributed to 

an improved RR of lane 1 and 6 of approx. 10% (Fig.8(b)). Since 

line 1 and 6 are at the edge of the AER sensor, they typically have a 

low RR due to weak input activity [7]. The LRS variability helps us 

to improve the RR at these lanes. Fig.9 represents the contour plot 

of the RR as a function of LRS and HRS variability. Whereas the 

first slightly decreases the RR, the latter strongly improves the RR. 

(ii) Fig.10 presents the SNN used to classify spike waveforms from 

neurological data [8]. Biological data is filtered and encoded using 

32 band-pass filters (2nd order Butterworth). The processed data is 

then presented to a 2- layer SNN with 160 RRAM based synapses. 

This more complex problem of classification of overlapping input 

patterns requires analog synapses. To this purpose we adopted mul-

tiple RRAM cells to form one synapse (Fig.11) [9]. The number of 

devices-per-synapse (N) was varied from 1 to 100 for three RRAM 

test conditions (Fig.12). The recognition rate strongly increases up 

to N=20 and increases only slightly for N > 20 (Fig.13). Fig.14 rep-

resents the contour plot of the RR as a function of LRS and HRS 

variability for N=50. As in the previous example, the RR seems to 

decrease with HRS and increase with LRS variability.  

4. Conclusions 

We presented the impact of the RRAM variability on two fully 

unsupervised neuromorphic systems. RRAM devices are pro-

grammed as binary synapses and a stochastic-STDP learning rule is 

adopted. Two different applications were demonstrated: (i) visual 

pattern extraction and (ii) classification of biological data. We 

demonstrated that LRS variability allows to improve the recognition 

rate up to 15%, while HRS variability slightly degrades the network 

performances (few percent) in both applications. High LRS variabil-

ity can be achieved using low programming currents (few µA). 

Moreover, operating at low compliance current values reduces the 

power consumption during learning and reading (thanks to higher 

LRS values). Improving HRS variability is more complex and it re-

quires engineering the RRAM cell.  
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Figure 1: Schematic of 

1-Transistor-1-Resistor 

(1T1R) co-integration 

used for this study. 

Figure 2: Cumulative distributions of Low Resistive State (LRS) and 

High Resistive State (HRS) as function of the current compliance (CC) 

for RRAM of Fig.1. Note the shift and widening of both LRS and HRS 

CDF for reduced CC. 

Figure 3: Estimation of maximum pro-

gramming power of RRAM as a func-

tion of the current compliance. 

 

Figure 4: Endurance failure rate 

of RRAM as a function of the re-

set voltage VR. Early HRS fail-

ure rate is induced by high VR. 

Figure 5: Endurance perfor-

mance of RRAM. Note the ex-

tended endurance thanks to 

low VR.  

 
Figure 6: Spiking Neural Net-

work (SNN) used to detect cars 

on a highway video sequence 

and automatically extract lane 

trajectories. 

Figure 7: LRS and HRS distributions of 

test conditions for SNN of Fig.6. 

 

 
Figure 8: (a) Overall Recognition Rate (RR) for the 

test conditions C1-C4 of Fig.7. The RR has been 

computed for the first (light blue) and the second 

(dark blue) layers (b) RR for lanes 1 and 6. Note the 

high RR for C4.  

 
Figure 9: Recognition rate of car 

detection SNN (Fig.6) as a 

function of LRS and HRS 

variability. 

 
Figure 10: Spiking Neural Network (SNN) used to 

detect and classify neural spikes (=action poten-

tials). Synapses are based on a multi-cell concept 

in order to achieve multiple synaptic weights. 
 

 
Figure 11: Multi-cell synapse concept. 

Each equivalent synapse consists of a se-

ries of RRAM devices, i.e. the corre-

sponding synaptic weight is the sum of 

device conductances. A pseudo random 

number generator (PRNG) is used to en-

able gradual tuning overcoming the typi-

cal abrupt switching characteristic of 

RRAM. 

 
Figure 12: LRS and 

HRS distributions of 

test conditions for 

SNN of Fig.10. 

 
Figure 13: Overall Recognition Rate 

of spike sorting SNN as a function of 

number of devices per synapses and 

for different conditions C1-C3. 

 
Figure 14: Recognition rate of SNN 

used for neural spike classification 

as a function of LRS and HRS 

variability. 
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