Growth and characterization of ¹⁶⁷Er doped-Y₂SiO₅ single crystal

Hiroo Omi^{1,2,a)}, Takehiko Tawara^{1,2)}, Kaoru Shimizu¹⁾, and Shiro Saito¹⁾

- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato- Wakamiya, Atsugi, Kanagawa 243-0198, Japan Phone: (+81) 46 240 3414, ^{a)}Email: omi.hiroo@lab.ntt.co.jp
 ²⁾ Nanophotonics Center, NTT Corporation,
 - 3-1 Morinosato- Wakamiya, Atsugi, Kanagawa 243-0198, Japan

1. Introduction

The hyperfine structure of the optical transition in rare-earth-doped crystal offers suitable three-level schemes for efficient electromagnetically induced transparency (EIT) and stimulated Raman adiabatic passage (STIRAP) in solid state materials. The use of the hyperfine structure of nuclear spin of isotopically purified rare-earth dopant in Y_2SiO_5 single crystal is promising and indeed ¹⁵¹Eu (*I*=5/2) in Y_2SiO_5 single crystal has been grown and optically addressable nuclear spins are realized with six hours coherence time [1]. To realize long-distance quantum optical communications through optical fiber (e.g. 1000 Km), however, it is very important to realize optical addressable nuclear spins with long coherence time at telecommunications wavelength of 1.5 um.

Er has optical transitions at 1.5 um and six different types of isotopes which are 162, 164, 166, 167, 168, 170 [2]. Among them, only ¹⁶⁷Er (natural abundance is 23 %) has nuclear spin I=7/2 and its hyperfine energy levels are separated without and with external magnetic fields [3]. For purpose of realizing EIT in three levels of nuclear spins in ¹⁶⁷Er, Baldit *et al.*, have obtained the hole burning spectrum from isotopically purified 167 Er (0.005 %) in Y₂SiO₅ single crystal [4,5]. Hashimoto et al., on the other hand, have shown using coherent Raman beat measurements that the coherence time of nuclear spin (T_2) of ¹⁶⁷Er in Y₂SiO₅ (0.001 %) is 10 μ s, and they have also predicted that T_2 can be increased up to 50 μs when all 0.001% Er ions are replaced with ¹⁶⁷Er [6]. To realize this prediction in the three-levels of the nuclear spins of ¹⁶⁷Er ions, we have to originally grow high-quality Y₂SiO₅ single crystals doped with isotopically purified ¹⁶⁷Er.

Here we report the crystal growth of only 167 Er doped-Y₂SiO₅ single crystal and its structural and optical characterizations. We found the crystal quality and optical quality are comparable to those of the commercially available non-isotope controlled Y₂SiO₅ single crystal.

2. Experiments

Single crystals of Er doped- Y_2SO_5 were grown by the Czochralski (Cz) method by the OXIDE Corporation. A commercially available isotope ¹⁶⁷Er metal (ATOX Corporation) was mixed into high-purity powders of SiO₂ and Y_2O_3 before the Cz growth so that the concentration of ¹⁶⁷Er in Y_2SiO_5 would be 0.001 %. The Cz growth was repeated several times to obtain a high-quality ingot. The ingot is 5 cm in diameter and 15 cm in length (**Fig. 1**). After the ingot had been cut into a cylindrical shape, XRD measurements were performed with monochromated Cu K α_1 X-rays to find the best portions in it.

Figure 1: ¹⁶⁷Er doped-Y₂SiO₅ ingot grown by Cz method

We further cut the cylindrical ingot to obtain a single crystal for quantum optics experiments. The crystal is 5-mm square and 6-mm long on b-axis of Y_2SiO_5 . The surfaces were polished and anti-reflection coating was applied. Raman spectroscopy was performed with a Renishaw system. Secondary ion mass spectroscopy (SIMS) was also performed. Photoluminescence (PL) and PL excitation (PLE) measurements were performed with high-resolution spectroscopy. Furthermore, we prepared a natural Er (¹⁶⁷Er: 23 %) doped-Y₂SiO₅ single crystal (0.001 %) grown by the Cz method in the Scientific Materials Corporation as a reference.

3. Results and discussion

Table 1 summarizes of the full width at half maximum (FWHM) of the (080) X-ray diffraction peaks in omega scans at $2 \theta = 133.55^{\circ}$ from several areas of cylindrical ingot. The average FWHM is 0.0116° and the sharpest peak (FWHM= 0.0107°) is obtained from the central area of the ingot. On the basis of this result, we cut out the single crystal from the central area of the ingot for quantum optics measurements.

Position of cylindrical ingot	FWHM (deg.)
Central area	0.0107
Side area 1	0.0108
Side area 2	0.0116
Side area 3	0.0108
Side area 4	0.0109

Table 1: Summary of peak widths of X-ray diffractions from different areas of the cylindrical 167 Er dpoped-Y₂SiO₅ ingot.

Figure 2 shows Raman spectra obtained from the ¹⁶⁷Er doped- Y_2SiO_5 single crystal (0.001 %) cut from the central area of the cylindrical ingot and from the Er doped- Y_2SiO_5 crystal as a reference. The Raman spectra almost match each other, indicating that the crystal quality of the ¹⁶⁷Er-doped Y_2SiO_5 single crystal is comparable to that of Er doped- Y_2SiO_5 single crystal.

Figure 2: Raman spectra from 167 Er doped-Y₂SiO₅ (YSO) and Er doped-Y₂SiO₅ single crystals.

Figure 3 shows SIMS depth profiles of Er isotopes obtained from the ¹⁶⁷Er doped-Y₂SiO₅ single crystal. The profile of ¹⁶⁷Er is the most intense over the whole depth range, confirming that the majority of the isotope in the Y₂SiO₅ single crystal is ¹⁶⁷Er as designed, whereas it is the third in the natural abundance. Note here that natural abundances of Er are 0.14 % for ¹⁶²Er, 1.6% for ¹⁶⁴Er,

Figure 3: SIMS depth profiles from the 167 Er doped-Y₂SiO₅ single crystal. Inset shows the hyperfine structure of an individual Er³⁺ ion.

33.5 % for 166 Er, 22.9 % for 167 Er, 27 % for 168 Er, and 14.9 % for 170 Er.

Figure 4 shows PLE color mapping obtained from the 167 Er doped-Y₂SiO₅ (a) and Er doped-Y₂SiO₅ (b) at 4 K. All peaks can be clearly assigned to the optical transitions of Er³⁺ ions located at Y₁ and Y₂ sites of Y₂SiO₅ single crystal in both crystals. The PL peak width of 167 Er doped-Y₂SiO₅ is almost the same as that of Er doped-Y₂SiO₅. The energy levels of the optical transitions (Y₁-Z₁), including hyperfine energy levels of Er³⁺ ions, are schematically shown in the inset of **Fig. 3**.

Figure 4: PLE color mapping from 167 Er doped-Y₂SiO₅ (a) and Er doped-Y₂SiO₅ (b) at 4 K.

4. Conclusion

Isotopically purified ¹⁶⁷Er doped- Y_2SiO_5 single crystals were grown by the Cz method. We confirmed that the quality of the originally made ¹⁶⁷Er doped- Y_2SiO_5 single crystals is comparable to that of commercially available Er doped- Y_2SiO_5 in structure and optical properties. We are planning to examine hole burning from the ¹⁶⁷Er doped- Y_2SiO_5 single crystal at low temperature.

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number JP15H04130 and JP16H01057.

References

- [1]M. Zhong, et al., Nature 517, 177 (2015).
- [2] C. Yin et al., Nature 497, 91 (2013).
- [3] M. Sellars *et al.*, Abstract in Aust. Inst. Phys. Congress. no. 685 (2014).
- [4] E. Baldit et al., Conference abstract in CLEO (2006).
- [5] E. Baldit et al., PRB 81, 144303 (2010).
- [6] D. Hashimoto et al., J. Lumin. 171, 183 (2016).