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Abstract 
This paper presents a self-biased low-dropout linear 

regulator (SB-LDO) for ultra-low power battery manage-
ment. The SB-LDO employs a current feedback circuit to 
achieve highly accurate and efficient operation. Measure-
ment results demonstrated that the proposed SB-LDO op-
erates with ultra-low quiescent current of 151 nA. The 
maximum output current was 1 mA, when the input and 
output voltage were 4.25 and 4.16 V, respectively.  

1. Introduction 
Energy storage devices are an indispensable component 

for next generation power-aware small-sized energy harvest-
ing applications [1]. A thin film Li-ion secondary battery is a 
good candidate for storing harvested energy [2]. However, 
because a Li-ion battery must be protected from overcharge 
voltage (e.g., typical charging voltage is 4.2 V), the charging 
voltage must be carefully regulated. Figure 1 shows a block 
diagram of the battery charger. Low-dropout regulators 
(LDOs) are commonly used for battery charging applications 
to protect a battery against overvoltage [3, 4]. However, be-
cause the conventional LDOs dissipate large quiescent cur-
rents, we have to design an LDO as low power as possible. 
Therefore, a highly accurate and efficient LDO is strongly re-
quired for ultra-low power Li-ion battery management.  

In this paper, we propose a self-biased (SB) LDO employ-
ing a current feedback technique to achieve highly accurate, 
ultra-low quiescent current, and highly efficient voltage reg-
ulation. Details of the circuit are as follows.  

2. Architecture and circuit design 
Figure 2 shows a simplified schematic of the proposed 

SB-LDO. It consists of a differential amplifier (DA), current 
feedback circuit (CFC), and output stage. Note that, in our 
SB-LDO, a current reference circuit to bias the DA is not used. 
When output current IOUT changes, bias currents in the LDO 
adaptively change to maintain VFB = VREF, where VFB and VREF 
are the feedback and reference voltages. The circuit achieves 
high accuracy and ultra-low quiescent current by using a 
feedback loop with CFC. Details of the operation are as fol-
lows. 

The current mirror gains of the nMOS (MN2:MP3) and 
pMOS (MP3:MP4:MP5) transistors are set to 1:2 and 1:1:α, 
respectively. When IOUT becomes large, the output voltage 
VOUT and the feedback voltage VFB decrease. Then, I2, I3, and 
IOUT increase. Therefore, VOUT and VFB increase to maintain 
VFB = VREF.  

In a steady state, I1, I2, and I3 settle to 2I1 = 2I2 = I3 = (IOUT 

+ IFB)/α, where IFB is the current flowing in the feedback re-
sistors R1 and R2. The current use efficiency of the proposed 
SB-LDO can be defined as 
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Therefore, the larger the α, the higher the efficiency. 
In the sub-threshold region of MOSFETs, I2 can be ex-

pressed as 
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where n and VT are the sub-threshold slope factor and the ther-
mal voltage, respectively. Assume that the current gain errors 
between MN2 and MN3 and between MP3 and MP4 are δn 
and δp, respectively. Then, I1 + I2 can be expressed as 

( )( ) )3(.12 2pn21 III δδ ++=+  

Because VFB is equal to R2VOUT/(R1+R2), VOUT can be ex-
pressed as 

( ){ } )4(,21ln npTREFGOUT δδ ++−≈ nVVAV  

where AG is (R1+R2)/R2. When δn and δp are zero, VOUT is 
equal to AGVREF. Therefore, the accuracy of VOUT is deter-
mined by that of current mirrors. The high accuracy of the 
current mirror can be achieved using cascode current mirror. 

 
Fig. 1 Battery charger. 

 

Fig. 2 Schematic of proposed LDO. 
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Figure 3 shows a complete schematic of the proposed SB-
LDO. The α was set to 1000. A low-power voltage reference 
circuit (VRC) is also implemented using [5]. The VRC gen-
erates VREF with nano-watt power dissipation. To ensure the 
reliability against high input voltage, the thick gate-oxide 
MOSFETs are employed in cascode connection.  

3. Measurement results 
A prototype chip was fabricated with a 0.18-µm 1P6M 

CMOS process with deep n-well option. The 3.3-V tolerant 
MOSFETs were used. Figure 4 (a) shows a chip micrograph 
(area: 0.13 mm2). Figure 4 (b) shows measured distribution 
of VOUT before and after trimming in ten samples (VIN = 4.5 
V). After trimming, the mean µ, the standard deviation σ, and 
the coefficients of variation σ/µ, were 4.2 V, 21 mV, 0.50%, 
respectively.  

Figure 5 (a) shows measured VOUT as a function of VIN in 
ten samples (IOUT = 0 A). VOUT was settled to 4.2 V when VIN 
exceeded 4.2 V. The line regulation was 0.12%/V in the input 
range from 4.2 to 5.0 V. Figure 5 (b) shows measured input 
current IIN including the current dissipation of VRC as a func-
tion of VIN. Because of the input voltage error in DA (VFB ≠ 
VREF), large IIN flowed when VIN was smaller than 4.2 V. 
However, IIN was settled to about 100 nA in a steady state. 
The maximum quiescent IIN was 151 nA. The proposed SB-
LDO performed highly accurate and ultra-low power opera-
tion in quiescent condition. Figure 5 (c) shows measured error 
of VOUT as a function of IOUT. The maximum IOUT was 1 and 
6.8 mA when VIN was 4.25 and 5.0 V, respectively. Figure 5 
(d) shows measured IIN and current use efficiency (Eq. (1)) as 
functions of IOUT. The SB-LDO achieved 50 and 90% effi-
ciency when IOUT was 100 nA and 1 µA, respectively.  

Figures 6 (a) and (b) show the measured transient wave-
forms and PSRR. RL and CL were set to 47.9 kΩ and 10 µF. 
We changed IOUT dynamically by turning on and off the ex-
ternal switch with VCTRL (see Fig. 3). We confirmed that VOUT 
was stable against large load-current change. The measured 
PSRR was lower than –30dB when the input frequency was 
higher than 1 kHz. Table I summarizes the performance. The 
measurement results demonstrated that the SB-LDO achieved 
low-dropout, highly efficient, and stable operation. 

4. Conclusion 
A highly accurate and efficient SB-LDO was presented. 

The measurement results demonstrated that the proposed SB-
LDO achieved 4.2-V output, 1-mA output current with 4.25-

V input and 1% error, 151-nA quiescent current, and 90% 
current use efficiency with 1-µA output current.  
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Fig. 4 (a) Chip micrograph and (b) measured distribution of 
VOUT in ten samples (VIN = 4.5 V). 

 
Fig. 5 Measured (a) VOUT and (b) IIN as functions of VIN in ten 
samples (IOUT = 0 A), (c) output error, and (d) IIN and current 
use efficiency as functions of IOUT (VIN = 4.5 V). 

 
Fig. 6 Measured (a) transient waveforms and (b) PSRR.  

Table I Performance summary. 
Reference This work [3] 

Technology 0.18-µm 0.5-µm 
Area 0.13 mm2 0.16 mm2 
VIN 4.25 – 5.0 V 4.3 V 

VOUT 4.2 V 4.2 V 
IQ < 151 nA N / A 

Max IOUT (VIN) 1 mA (4.25 V) 3 mA (4.3 V) 
Efficiency > 90% (IOUT > 1 µA) (89.7%, power eff.) 
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Fig. 3 Complete schematic of our proposed LDO. 
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