A Spring Design for Tri-axis MEMS Accelerometer by Multi-layer Metal Technology

Daisuke Yamane ${ }^{1}$, Toshifumi Konishi ${ }^{2}$, Teruaki Safu ${ }^{2}$, Hiroshi Toshiyoshi ${ }^{3}$, Masato Sone ${ }^{1}$, Kazuya Masu ${ }^{1}$ and Katsuyuki Machida ${ }^{2}$
${ }^{1}$ Tokyo Institute of Technology
4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503 Japan
Phone: +81-45-924-5031 E-mail: yamane.d.aa@m.titech.ac.jp
${ }^{2}$ NTT Advanced Technology Corporation
3-1 Wakamiya, Morinosato, Atsugi, Kanagawa 243-0124, Japan
${ }^{3}$ Research Center for Advanced Science and Technology, The University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan

Abstract

This paper presents a spring design for tri-axis MEMS accelerometers fabricated by multi-layer metal technology. The proposed serpentine spring with multi-layer metal structure can suspend a high-density proof mass and provide three-axis suspension functionality. Moreover, the proposed spring structure enhances the design flexibility of the spring constant in each axis. The measurement results of the fabricated device have a good agreement with the designed characteristics.

1. Introduction

The performance of micro-electro-mechanical systems (MEMS) accelerometers is required to be further improved to realize potential future applications [1], and therefore we proposed a highly-sensitive MEMS accelerometer [2] by using multi-layer metal technology [3]. Fig. 1 shows a schematic image of a tri-axis MEMS accelerometer with multi-layer metal structures. High-density metal is used to increase the proof mass and to reduce the thermo-mechanical noise [2]. Accordingly, as reported in the previous work [4], spring constant has to be sufficiently high enough to suspend the proof mass against gravitational acceleration. In this work, we present a design of a tri-axis spring for a MEMS accelerometer fabricated by multi-layer metal technology. We also show the evaluation results of a fabricated device.

2. Spring Design

Spring Constant Analysis
As presented in reference [4], the design requirements of

Fig. 1 Schematic image of a tri-axis MEMS accelerometer implemented by multi-layer metal technology.
a spring for a highly-sensitive tri-axis MEMS accelerometer implemented by multi-layer metal technology are as follows; (I) sufficiently high spring constant to support the proof mass against gravitational acceleration, (II) tri-axis suspension functionality, and (III) design flexibility of spring constant. To meet the design requirements, we calculated the spring constants of serpentine springs by using an analytical model [5]. Fig. 2 shows the spring-constant analysis results of the

Fig. 2 Analysis of serpentine spring structures. Spring thicknesses (t) are (a) $3 \mu \mathrm{~m}$ and (b) $15 \mu \mathrm{~m}$.

Fig. 3 Multi-layer metal spring structure integrated with a MEMS capacitive accelerometer.

Fig. 4 SEM images of a tri-axis MEMS accelerometer with multilayer metal serpentine springs.
 obtained by using HIOKI IM3533-01 LCR meter. (a) Experimental setup, (b) X-axis, (c) Y-axis, and (d) Z-axis characteristics.
$f_{\text {res: }}$ Resonant frequency
spring thickness of $3 \mu \mathrm{~m}$ and $15 \mu \mathrm{~m}$. Spring thickness of 15 $\mu \mathrm{m}$ achieves sufficient spring constants that can hold proof mass in typical multi-layer metal MEMS accelerometers [4]. Moreover, increasing the spring thickness enables us to design each spring constant in the same range, which is useful for tri-axis acceleration sensing with a single proof mass.

Spring Structure Design

Fig. 3 shows the proposed multi-layer metal spring structure. We designed serpentine spring for tri-axis sensing, and

Table I Measured Parameters

Axis	X	Y	Z
Range (G)	$\pm 3^{*}$	$\pm 3^{*}$	$\pm 3^{*}$
Proof mass (kg)	$5.80 \times 10^{-8}\left(5.27 \times 10^{-8}\right)^{*}$		
Resonant frequency (Hz)	$643(667)^{*}$	$649(668)^{*}$	$561(872)^{*}$
Spring constant $(\mathrm{N} / \mathrm{m})$	$0.95(0.93)^{*}$	$0.96(0.93)^{*}$	$0.72(1.6)^{*}$

G: gravitational acceleration, *Design value
used M3 and M4 layers to achieve the spring thickness of 15 $\mu \mathrm{m}$. To enhance the accelerometer-design flexibility and keep each layer thickness unchanged, we chose to use the combination of multiple metal layers.

3. Experimental Evaluation

Fig. 4 shows the scanning electron microscope (SEM) images of a tri-axis MEMS accelerometer with multi-layer metal serpentine springs. The device was fabricated by using multilayer metal technology [2]. The spring thickness is designed to be $15 \mu \mathrm{~m}$ as the cross-section schematic is shown in Fig. 3. We then experimentally evaluated the mechanical characteristics of the proof-of-concept device to verify the feasibility of multi-layer metal spring structure for tri-axis acceleration sensing. Fig. 5 presents the measured capacitance and phase as a function of frequency. Experimental setup is shown in Fig. 5(a), and the measurement result is shown in each axis from Fig. 5(b) to Fig. 5(d). Table I summarizes the measured and designed parameters of the developed device. The measured resonant frequencies and spring constants were consistent with the design values.

4. Conclusions

We have presented a design approach of spring structure for tri-axis MEMS accelerometers implemented by multilayer metal technology. The proposed multi-layer metal spring with serpentine structure can suspend high-density proof mass and provide the design flexibility of the spring constant in each sensing axis. The measurement results of the fabricated device show a good agreement with the designed characteristics. Thus, we confirmed the feasibility of the multi-layer metal spring structure for tri-axis acceleration sensing.

Acknowledgements

The authors would like to thank Dr. T. Maruno, Dr. Y. Akatsu, M. Yano, K. Kudo, and M. Fujinuma with NTT-AT Corp. for technical discussions. This work was supported by CREST, JST, and JSPS KAKENHI Grant Number 15K17453.

References

[1] G. Krishnan et al., J. Indian Inst. Sci., 87 (2007) 333.
[2] D. Yamane et al., Appl. Phys. Lett., 104 (2014) 074102.
[3] K. Machida et al., ECS Trans., 61 (2014) 21.
[4] D. Yamane, in Proc. IEEE NEMS 2016 (2016) B3P-B-54.
[5] G. K. Fedder, Ph.D. thesis, University of California at Berkeley, CA, 1994.

