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Abstract 

A high-responsivity terahertz (THz) detector was fab-

ricated using an InAlAs/InGaAs high-electron-mobility-

transistor (HEMT) integrated with bow-tie antenna. We 

employed a high-indium content and thick contact layer 

for reduction in series resistance, and obtained a maxi-

mum transconductance of 1.6 S/mm and the subthreshold 

slope of 80 mV/dec in 50-nm-long gate. The measured cur-

rent sensitivity and noise equivalent power were 5.8 A/W 

and 0.7 pW/Hz1/2, respectively. 

 

1. Introduction 

The terahertz (THz) frequency range located between the 

lightwave and millimeter wave has been receiving considera-

ble attention because of its many possible applications, such 

as imaging, spectroscopy, and high-capacity wireless com-

munications [1]. Compact, high responsivity, and low noise 

detectors are key components for various applications of the 

THz waves. Conventional Schottky barrier diode (SBD) de-

tectors have been used for various terahertz applications. 

However, current responsivity Ri decreases in high-frequency 

operation because the area of the Schottky junction is small, 

as required for increasing the cutoff frequency. Recently, de-

tectors using field effect transistors have been studied inten-

sively [2-5]. In contrast with the SBD detector, the cutoff fre-

quency of a HEMT detector can be increased by reduction in 

the gate length without reducing Ri. We proposed and fabri-

cated a THz detector using an InGaAs composite-channel 

HEMT with maximum transconductance gm.max of 1.2 S/mm, 

and achieved high Ri (5 A/W) [6]. Because, Ri is proportion 

to gm.max, increase in gm.max by reduction in series resistance is 

effective for high responsivity. 

In this study, we employed a high-indium content and 

thick contact layer for reduction in series resistance. We 

achieved increment in gm.max (1.6 S/mm) and higher current 

responsivity of 5.8 A/W. A noise characteristics was also 

measured, and a low noise equivalent power (NEP) of 0.7 

pW/Hz1/2 was obtained. 

 

2. Device Structure and Detection Mechanism 

The schematic device structure of our HEMT THz detec-

tor is shown in Fig. 1. An InP-based InAlAs/InGaAs compo-

site-channel HEMT with two-finger T-shaped gates was inte-

grated at the center of a bow-tie antenna. A Pt-buried gate 

process was used to reduce the short channel effect for small 

S.S. value [7]. The metal–insulator–metal (MIM) capacitor 

was connected between the gate and the drain; it was shorted 

in the THz frequency and open for the direct current to pro-

vide a bias voltage.  

 

 
 

Fig. 1 Schematic of the HEMT THz detector structure integrated 

with bow-tie antenna. The antenna impedance Ra of a bow-tie an-

tenna with an angle of 60° was 50 Ω. 

 

 
 

Fig. 2 Id-Vgs and transconductance characteristics. Low subthreshold 

slope was obtained with Pt-buried gate. 

 

Because, the FET has diode-like characteristics in the Id–

Vgs characteristics, irradiated THz wave can be detected by 

rectification. Although the detection mechanism is basically 

the same as that used for non-resonant plasmonic detection [2, 

3], a high current responsivity is expected, owing to ballistic 

transport in the short-gate HEMT [6]. Using gm.max and sub-

threshold slope S.S., Ri is roughly expressed as Ri ≈ gm.max-

WRa/S.S., where Ra is antenna impedance and W is gate width 
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[6]. A high value of gm.max with small subthreshold character-

istics is required for high responsivity. The voltage respon-

sivity Rv is given by Ri × Rd, where Rd is drain resistance. 

 

 
Fig. 3 Dependence of current responsivity Ri on received power Pin. 

 

 
Fig. 4 Frequency dependence of noise voltage. 

 

The epitaxial layer structure was grown by molecular 

beam epitaxy on semi-insulating (100) InP substrates. From 

bottom to top, the layers consist of a 200-nm InAlAs buffer, 

a 10-nm InGaAs composite-channel, a 3-nm InAlAs spacer, 

a Si -doping of 5 × 1012 cm−2, a 2-nm InAlAs barrier, a 3-

nm InP etching-stopper, a 10-nm layer of n+-InAlAs (3 × 1019 

cm−3), a 40 nm n+-InGaAs contact layer (5 × 1019 cm−3) , and 

a 9 nm high-indium-content n+-InGaAs top contact layer (5 × 

1019 cm−3). Compared to the previous structure [6], we em-

ployed thick contact layer (from 15 nm to 40 nm) and high-

indium-content n+-InGaAs top contact layer. By these im-

provements, we obtained reduction in contact resistance from 

0.054 to 0.023 Ωmm and sheet resistance from 65 to 27 Ω/□. 

The measured Id-Vgs and transconductace characteristics were 

shown in Fig. 2. We obtained higher gm.max (1.6 S/mm) by the 

reduction in series resistance. The measured S.S. value was 

80 mV/dec. 

The current responsivity Ri, measured as a function of the 

received power of 280 GHz signal, is shown in Fig. 5b. A 

maximum Ri of 5.8 A/W was obtained in the low-received-

power region. The Ri drops with received power because of 

the degradation of nonlinearity in case of large signal. We ob-

tained higher Ri owing to higher gm.max. Using measured Rd of 

1.2 kΩ, Rv was simply obtained as 7 kV/W. 

We also measured the noise characteristics of the HEMT 

detector. The frequency dependence of noise voltage Vn is 

shown in Fig. 4. The 1/f noise decreases with frequency, and 

Vn became flat above the 1/f corner frequency of ~500 Hz. Vn 

of 5 nV/Hz1/2 was obtained above ~500 Hz, which is well 

agreed with the theoretical thermal noise of 4.5 nV/Hz1/2 gen-

erated by 1.2 kΩ drain resistance. Because HEMT detector is 

operated in subthreshold region, the channel thermal noise is 

small and the thermal noise due to drain resistance is domi-

nant. Using Rv of 7 kV/W and Vn of 5 nV/Hz1/2, NEP (= Vn/Rv) 

was obtained as ~0.7 pW/Hz1/2. We achieved very low NEP 

value with high responsivity HEMT THz detector. Lower 

NEP can be realized using a state-of-the-art HEMT having 

very high gmmax of 3.1 S/mm [8]. 
 

3. Conclusions 

   A high-responsivity THz detector was fabricated using an 

InAlAs/InGaAs HEMT integrated with bow-tie antenna. We 

employed a high-indium content and thick contact layer for 

reduction in series resistance, and obtained a maximum trans-

conductance of 1.6 S/mm and the subthreshold slope of 80 

mV/dec in 50-nm-long gate. The measured current sensitivity 

and noise equivalent power were 5.8 A/W and 0.7 pW/Hz1/2, 

respectively. 
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