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Abstract 

In this study, high performance E-mode Al2O3/Al-

GaN/GaN MIS-HEMTs fabricated by standard fluorine 

ion implantation and partial-gate -recess is demonstrated. 

The E-mode device exhibits maximum current density of 

650 mA/mm, threshold voltage of 1.8 V, low on-resistance 

of 9.5 Ω∙mm, high breakdown voltage of 860 V, low sub-

threshold slope (SS) of 87 mV/decade and tiny threshold 

voltage hysteresis.  

 

1. Introduction 

Gallium nitride (GaN)-based high electron mobility tran-

sistor (HEMT) has been widely used in high power electron-

ics. Due to safety-consideration, enhancement-mode (E-

mode) operation is preferred for electric vehicle power device 

application. Several approaches have been demonstrated to 

achieve E-mode HEMTs in the past, such as recessed-gate, p-

type GaN, and fluorine plasma implantation. Recently, owing 

to its simple process, E-mode device has been fabricated by 

combining recessed-gate and MIS (metal-insulator-gate) 

structure [1, 2]. However, fully recess barrier degrades chan-

nel mobility and increases channel resistance, leading to large 

on-resistance and low current density [3, 4]. Partial-gate-re-

cess, remaining a thin barrier, could preserve high channel 

mobility but threshold voltage is not positive enough for 

achieving E-mode operation. 

In this work, we implanted fluorine ions into both the gate 

insulator and the recessed-barrier layer to increase the posi-

tive threshold voltage shift for mitigating the channel damage. 

Fluorine ions were introduced into the GaN by ion implanter, 

which provides well-controlled fluorine dose and precise im-

plantation depth. The fabricated E-mode devices exhibit high 

performance with a positive threshold voltage, high drain cur-

rent density, high breakdown voltage, steep subthreshold 

slope and low threshold voltage hysteresis.  

 

2. Device fabrication and measurement 

The AlGaN/GaN HEMT structure was grown on (111) 

silicon substrate by MOCVD. The epitaxial structure includes 

a 2-nm GaN cap layer, a 25 nm Al0.23Ga0.77N barrier layer, 

and a 4.3 µm buffer layer. The devices fabrication starts with 

ohmic contact formation of alloyed Ti/Al/Ni/Au metal stack. 

The planar isolation was performed by nitrogen ion implan-

tation. To obtain clean GaN surface, in-situ nitrogen plasma 

treatment was performed using PECVD machine, followed 

by the deposition of 15-nm SiNx layer as passivation layer 

[5]. Nitride etch and gate recess were performed by low 

power ICP-RIE system. The remaining barrier thickness was 

about 10 nm. The 15 nm AlN/Al2O3 was deposited by ALD 

system as gate dielectric, where the AlN as interfacial layer 

was utilized to reduce the interface traps at Al2O3/GaN inter-

face. A post–deposition annealing (PDA) was performed at 

400 °C in N2 ambient. After gate window was defined by li-

thography, fluorine ions were directly implanted into the gate 

region by Varian E500HP ion implanter. The implant energy 

and ion dose were 10 keV and 1x1012 cm-2. Ni/Au was depos-

ited by electron beam evaporation as the gate metal. Finally, 

post–metallization annealing (PMA) was carried out at 

400 °C for 10 minutes in N2 ambient to repair the implanta-

tion damages and activate the fluorine ions. A reference sam-

ple was also fabricated at same process flow but without gate 

recess and fluorine ion implantation for performance compar-

ison. Agilent B1505A power device analyzer was used for 

DC characteristics and hysteresis measurement. 

 
3.Results and discussions 

The schematic cross section of the E-mode device is 

shown in Fig. 1. The fabricated devices feature a gate length 

of 3 µm, a gate-drain spacing of 13µm, gate-source spacing 

and gate width were 4µm and 25µm, respectively.  

3.1 DC characteristics 

Fig. 2(a) shows transfer characteristics of both E-mode 

and D-mode device. The threshold voltage, determined by 

linear extrapolation of the transfer curve at VDS = 10 V, are  

-6.4 V and +1.8 V for D-mode devices and E-mode devices, 

respectively. Fig. 2(b) shows the transfer characteristic in the 

log scale of the E-mode HEMT. The steep subthreshold slope 

 
Fig. 1. The schematic cross section of the E-mode device 
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(SS) of 87 mV/decade and the ON/OFF current ratio of ~1010 

were obtained. Besides, very low gate leakage of 10-8 A/mm 

at VGS = 9 V was observed, indicating the quality of gate in-

sulator was preserved after fluorine ion implantation. 

 The output current characteristics of E-mode and D-

mode devices are shown in Fig. 3. E-mode devices show the 

maximum current density of 650 mA/mm at VGS = 9 V and 

the on-resistance of 9.5 Ω∙mm. For comparison, D-mode de-

vices show the maximum current density of 855 mA/mm at 

VGS = 5 V and the on-resistance of 8.7 Ω∙mm. The high drain 

current and the low on-resistance were obtained for E-mode 

device, indicating that the 10 nm AlGaN barrier remained 

could preserve high channel mobility and suppress the in-

crease of the channel resistance. The breakdown voltage of 

E-mode device is shown in Fig. 4. The E-mode devices ex-

hibit breakdown voltage of 860 V at drain current of 2.7 

µA/mm when VGS = -1 V. 

3.2 Hysteresis effect 

The threshold voltage hysteresis is mainly due to the 

traps at the insulator/AlGaN interface. For gate-recessed GaN 

MIS-HEMTs, the interface traps locate more close to the GaN 

channel, resulting in strong electron scattering at the GaN 

channel, which induced threshold voltage hysteresis [6]. So, 

it’s an important issue for gate-recessed GaN MIS-HEMTs to 

suppress hysteresis effect. The fabricated E-mode devices 

show tiny threshold voltage hysteresis (0.1 V) when the bias 

swept from -2 V to +9 V and +9 V to -2 V, as plotted in Fig. 

5. 

3. Conclusions 

High performance E-mode Al2O3/AlGaN/GaN MIS-

HEMTs achieved by combining standard fluorine ion implan-

tation and partial-gate-recess is demonstrated. The fabricated 

E-mode device shows a positive threshold voltage of 1.8 V, a 

maximum current density of 650 mA/mm, an on-resistance of 

9.5 Ω∙mm and an OFF-state breakdown voltage of 860 V. 

Compared to D-mode devices with similar process, only 

about 10% increase of on-resistance is observed for E-mode 

devices. Besides, E-mode devices also exhibited very low 

threshold voltage hysteresis. Thus, the proposed E-mode GaN 

MIS-HEMTs in this study is a promising candidate for future 

power electronic applications. 
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Fig. 2. Transfer characteristics of D-mode MIS-HEMTs and E-

mode MIS-HEMTs in the linear scale (a) and in the log scale (b) 
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Fig. 5. IDS-VGS characteristics of E-mode MIS-HEMTs by up 

and down sweep measurements 
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Fig.4. OFF-state drain leakage current of E-mode MIS-HEMTs 
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Fig. 3. IDS-VDS output characteristics of E-mode and D-mode 

MIS-HEMTs 
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