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Abstract 
We report the epitaxy of n+-Ge layer by in situ P-doping 
MOCVD with tertiary-butyl-germane and tri-ethyl-phos-
phine precursors for the first time. The crystalline and 
electrical properties were investigated in detail. The elec-
tron concentration of P-doped Ge epitaxial layer is meas-
ured by Hall effect and the Hall electron concentration is 

achieved as high as 1.81019 cm−3 at a growth temperature 

of 350 C. 
1. Introduction 
Ge has attracted much attention as a channel material for low-
power CMOS transistors because of its higher bulk carrier 
mobility than those of Si and compatibility with the conven-
tional Si CMOS process. In contrast to Ge p-MOSFET, how-
ever, it is well known that the high diffusivity and the low 
equilibrium solid solubility of n-type dopants (P, As, Sb) 
make it difficult to form high quality n+-Ge S/D junction in 
Ge n-MOSFET and several groups reported various doping 
methods for n-Ge to overcome the above issues [1-5]. 

We focus on in situ P-doping in Ge layers to exceed the 
equilibrium solid solubility and to grow damage-free epitax-
ial layers. Moreover, as reported in the literature [5], lowering 
the growth temperature possibly leads to an increase of elec-
trically active P concentration owing to the growth condition 
far from a thermal-equilibrium one. Recently, we reported 
that the metal-organic chemical vapor deposition (MOCVD) 
growth of undoped Ge and Ge1−xSnx epitaxial layers at low 

growth temperatures of 280–350 C [6], and selective epitax-
ial growth of Ge on SiO2/Si substrates at growth temperatures 

of 300–400 C [7]. MO materials have generally advantages 
of riskless explosive, pyrophoric, and toxic compared to con-
ventional hydride and chloride precursors. It is expected that 
formation of heavily in situ doping in Ge can be realized by 
low-temperature MOCVD as well as the conventional in situ 
doped Ge CVD. 

In this study, we examined in situ P-doping in Ge on Si 
substrate for the formation of n+-Ge epitaxial layers with a P 
concentration as high as 1020 cm−3 by low-temperature 
MOCVD. We revealed structural and electrical properties of 
MOCVD-grown P-doped Ge epitaxial layers. 
2. Experimental 

A high-resistivity Si(001) substrate (1000 cm) was 
chemically cleaned by dipping first into an alkaline solution 
(NH4OH:H2O2:H2O=1:6:20) and second into a 1% HF solu-

tion, followed by thermal cleaning at 1000 C for 15 min in a 

quartz chamber with a pressure of 2.4103 Pa in H2 ambient. 
A 200–300 nm thick P-doped Ge layer was grown on the Si 
substrate using a MOCVD system. Tertiary-butyl-germane 
(TBGe) and tri-ethyl-phosphine (TEP) were used as MO pre-
cursors of Ge and P, respectively. The substrate temperatures 

during the growth were 350 and 400 C. The total pressure 

and the TBGe flow rate were 3.0103 Pa and 1.0 sccm, re-

spectively. The TEP flow rate was ranged from 1.710−3 to 
1.1 sccm. The carrier type, the carrier concentration, and the 
sheet resistance of P-doped Ge layers were estimated by Hall 
effect measurement. In addition, X-ray diffraction (XRD) and 
atomic force microscopy (AFM) were performed to study the 
crystallinity and the surface morphology of P-doped Ge lay-
ers. 
3. Results and discussion 
Figure 1 shows the secondary ion mass spectroscopy (SIMS) 

depth profiles of P in the Ge:P/Si samples grown at 400 C 
with various TEP flow rates. This result exhibits that the P 
concentration in the Ge:P layer increases with the TEP flow 

rate. The average P concentration as high as 1.01020 at-

oms/cm3 is achieved for the TEP flow rate of 1.110−1 sccm, 

which exceeds the P equilibrium solid solubility of 21019 at-

oms/cm3 in Ge at 400 C [8]. For all samples, note that SIMS 
depth profiles of P near the Ge/Si interface is possibly inac-
curate owing to existing some interfering ion clusters such as 
GeSi, GeSiH, and so on. 

The XRD two dimensional reciprocal space mapping 
(XRD-2DRSM) result for the Ge:P/Si sample grown at 400 

C with a TEP flow rate of 1.110−1 sccm indicates that the 
fully strain-relaxed Ge:P layer is grown on Si substrate (Fig. 
2(a)). XRD ω-rocking curves of Ge004 were obtained to 
study the influence of the P incorporation on crystallinity of 
Ge:P layers. Increasing the TEP flow rate hardly affects the 
full width of half maximum (FWHM) values of Ge004 peaks 

for both growth temperatures of 350 and 400 C (Fig. 2(b)). 
Figure 3(a) shows AFM images of Ge layers without P 

and with a TEP flow rate of 1.110−1 sccm for growth tem-

peratures of 350 and 400 C, respectively. Increasing the TEP 
flow rate little degrade the surface morphology, and we can 
see no agglomeration of P atoms on the surface for all sam-
ples in this study. Moreover, the RMS roughness of Ge:P lay-

ers grown at 350 C is smaller than that of 400 C as shown 
in Fig. 3(b), which means lowering the growth temperature 
suppresses the three-dimensional island growth of Ge layers. 

Figures 4(a) and (b) show results of the carrier concen-
tration and the sheet resistance of Ge:P layers as a function of 
the TEP flow rate. For all Ge:P layers, n-type conduction was 
observed with Hall effect measurement. Fig. 4(a) demon-
strates the increase in the P concentration in the layer with the 
TEP flow rate. The Hall electron concentration which corre-
sponds to the electrically active P concentration are achieved 

as high as 1.71019 and 1.81019 cm−3 for the growth temper-

atures of 400 and 350 C, respectively. The sheet resistance 
of Ge:P layers decreases with the TEP flow rate as shown in 
Fig. 4(b). Here, we can see a plateau of electrically active P 

concentration of 1–21019 cm−3 in Fig. 4(a). It is considered 
that this plateau concentration is related to the equilibrium 
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solid solubility of P in Ge at the growth temperature. From 
these results, in situ P-doping by low-temperature MOCVD 
enables us to form the heavily doped n+-Ge epitaxial layers 
with a concentration at least as high as the P equilibrium solid 
solubility limit in Ge. 

Finally, we show the comparison of our achieved carrier 
concentration and reduced process temperature in this work 
with previous reports of various n-type doping techniques in 
Table I. In situ P-doping with MOCVD enables the reduced 

thermal budget as low as 350 C although the carrier concen-
tration in the Ge:P layer is not still beyond the P equilibrium 
solid solubility. For achieving a higher electrically active P 
concentration, further investigations of the relationship be-
tween the growth condition and the substitutional incorpora-
tion of P beyond the equilibrium solid solubility limit will be 
needed. 
4. Conclusions 
We investigated the crystalline and electrical characteristics

of in situ P-doped Ge epitaxial layers. In situ P-doping by 
low-temperature MOCVD demonstrated the incorporation of 

P in Ge as high as 1.01020 atoms/cm3 which exceeds P solid 
solubility. Heavily n+-Ge epitaxial layers with the electrically 

active P concentration of 1.71019 and 1.81019 cm−3 at 

growth temperatures of 400 and 350 C, respectively, were 
achieved. 
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Fig. 1 SIMS depth profiles of P for the Ge:P/Si sam-

ples grown at 400 C with various TEP flow rates. 
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Fig. 3 (a) 11 μm2 AFM images of Ge and 

Ge:P(TEP=1.110−1 sccm) layers grown at 400 and 350 C. 
(b) RMS roughness as a function of the TEP flow rate. 
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Fig. 4 (a) The TEP flow rate dependence of the Hall electron 
concentration, the P concentration (from SIMS), and (b) the 
sheet resistance in Ge:P/Si samples. 
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Table I Summary of achieved carrier concentration and the process 
temperature for various n-doping techniques for n+-Ge. 

Doping method
Carrier conc.

(cm−3)

Process temp.

(C)
Precursors

Ion implantation 5–61019 600 P [1]

Gas-phase doping 41019 600 Tertiary-butyl-arsine [2]

-doping 11020 530 GeH4, PH3 [3]

In situ doping

71019 400 GeH4, PH3 [4]

6.21019 320 Ge2H6, PH3 [5]

1.81019 350
TBGe, TEP [This work]

1.71019 400

Fig. 2 (a) XRD-2DRSM result of Ge:P(TEP=1.110−1 sccm)/Si sample 

grown at 400 C. (b) FWHM values of the Ge004 peaks of undoped- and 
P-doped Ge/Si samples as a function of the TEP flow rate. 
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