# **Impact of Si**<sub>*x*</sub>Ge<sub>1-*x*-*y*</sub>Sn<sub>*y*</sub> interlayer on reduction in Schottky barrier height of metal/*n*-Ge contact

Akihiro Suzuki<sup>1, 2</sup>, Shota Toda<sup>1</sup>, Osamu Nakatsuka<sup>1</sup>, Mitsuo Sakashita<sup>1</sup>, and Shigeaki Zaima<sup>1, 3</sup>

<sup>1</sup>Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

<sup>2</sup>Research Fellow of Japan Society for the Promotion of Science, Tokyo 102-8803, Japan

<sup>3</sup>Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan Phone: +81-52-789-3819, E-mail: asuzuki@alice.xtal.nagoya-u.ac.jp

# Abstract

A Schottky barrier height (SBH) as low as 0.18 eV has been achieved by inserting a lattice-matched  $Si_{0.04}Ge_{0.95}Sn_{0.01}$  ternary alloy interlayer at Al/*n*-Ge interface. A smaller strain with lattice matching of a  $Si_xGe_{1-x-y}Sn_y$  interlayer to Ge leads to a lower SBH of metal/*n*-Ge contact.

# 1. Introduction

One of the serious issues for the practical realization of high performance Ge-channel metal-oxide-semiconductor field effect transistor (MOSFET) is reduction of parasitic resistance. Especially, the reduction of the contact resistivity for metal/n-Ge interface is generally difficult because of a high Schottky barrier height (SBH) for n-Ge regardless of the metal work function due to a well-known Fermi level pinning (FLP) phenomenon. Origins of FLP at metal/Ge interface are discussed with metal-induced-gap-states (MIGS) and disorder-inducedgap-states (DIGS) models. MIGS is attributed to the penetration of electron wave function in a metal into semiconductor. On the other hand, DIGS is attributed to the disorder of atomic arrangement such as dangling bonds at the interface. Some technologies for reducing SBH of metal/n-Ge contact were previously reported, using wide bandgap dielectric interlayer [1-3], epitaxial metal [4, 5], amorphous metal nitride interlayer [6], and  $Ge_{1-x}Sn_x$  interlayer [7]. However, the technique of controlling FLP and SBH still has to be developed to reduce the contact resistivity for practical applications.

Here, we are focusing on the insertion of an epitaxial  $Si_xGe_{1-x-y}Sn_y$  ternary alloy layer at metal/Ge interface. The energy band structure and lattice constant of  $Si_xGe_{1-x-y}Sn_y$  can be independently controlled by contents of each element. Recently, our group has previously reported the high thermal robustness and the energy band structure of lattice-matched Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub>/Ge heterostructure [8, 9]. Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub> latticematched to Ge with a content ratio x/y of 3.7 realizes no-misfit epitaxial layer on Ge. That promises the high crystallinity and minimizing the dangling bond density at the  $Si_xGe_{1-x-y}Sn_y/Ge$ interface compared to a lattice-mismatched  $Ge_{1-x}Sn_x/Ge$  one [7]. Additionally, we expect that a  $Si_xGe_{1-x-y}Sn_y$  interlayer would suppress MIGS because its energy bandgap  $(E_g)$  is larger than that of Ge when the Si content increases. However, there is no report about the effect of  $Si_xGe_{1-x-y}Sn_y$  interlayer on SBH of metal/Ge contact. In this report, we investigated the impact of epitaxial  $Si_xGe_{1-x-y}Sn_y$  interlayer on the SBH reduction of metal/*n*-Ge contact.

# 2. Sample preparation

After chemical and thermal cleaning n-Ge(001), a 6-8 nmthick  $Si_xGe_{1-x-y}Sn_y$  epitaxial layer was grown on the Ge substrate with molecular beam epitaxy system. The deposition temperature was 200 °C. Contents of each element in Si<sub>x</sub>Ge<sub>1-x-v</sub>Sn<sub>v</sub> layers were estimated using X-ray photoelectron spectroscopy. Two kinds of Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub> layers with Si and Sn contents (x, y) of (4%, 1%) and (15%, 6%) were prepared. The expected lattice constant of  $Si_{0.04}Ge_{0.95}Sn_{0.01}$  is almost completely matched to Ge, while that of Sn-rich Si<sub>0.15</sub>Ge<sub>0.79</sub>Sn<sub>0.06</sub> is 0.28% larger than Ge. After taking out the samples to atmosphere, native oxide on the  $Si_xGe_{1-x-y}Sn_y$  surface was chemically removed. Then, Al electrodes were immediately deposited on the  $Si_xGe_{1-x-y}Sn_y$  surface and backside with vacuum evaporation method to prepare Al/Si<sub>x</sub>Ge<sub>1-x-v</sub>Sn<sub>v</sub>/n-Ge Schottky diodes. An Al/n-Ge diode without  $Si_xGe_{1-x-y}Sn_y$  was also prepared for comparison.

# 3. Results and discussion

The *in-situ* reflection high energy electron diffraction (RHEED) observation revealed the epitaxial growth of  $Si_xGe_{1-x-y}Sn_y$  layers on Ge as shown in **Fig. 1**. For the  $Si_{0.04}Ge_{0.95}Sn_{0.01}$  layer, a sharp pattern with the 1/2 order streak related to the surface reconstruction is clearly observed (**Fig. 1(a)**). On the other hand, for the  $Si_{0.15}Ge_{0.79}Sn_{0.06}$  layer, spotty pattern related to the three dimensional growth is observed (**Fig. 1(b)**). These results indicate a superior surface flatness of the lattice-matched  $Si_{0.04}Ge_{0.95}Sn_{0.01}$  layer to that of Sn-rich  $Si_{0.15}Ge_{0.79}Sn_{0.06}$  compressively strained on Ge.

**Figure 2** shows the in-plane X-ray diffraction (XRD) profiles of  $Si_xGe_{1-x-y}Sn_y/Ge$  samples and a Ge substrate. Broadening of the tail profile of the Ge220 Bragg reflection is significantly observed just for the  $Si_{0.15}Ge_{0.79}Sn_{0.06}/Ge$  sample. This result indicates that the crystallinity of the Sn-rich  $Si_{0.15}Ge_{0.79}Sn_{0.06}$  layer is inferior to the lattice-matched  $Si_{0.04}Ge_{0.95}Sn_{0.01}$  due to any lattice distortion and/or dislocation, which is consistent with the RHEED result.

Current density-voltage (J-V) measurement was performed for Al/Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub>/n-Ge and Al/n-Ge Schottky diodes at various temperatures. Figure 3 shows the J-V characteristics of all diodes measured at 300 K. While a rectifying behavior is clearly observed in the Al/n-Ge diode, the rectifying behavior is significantly weak in the Al/Si<sub>0.15</sub>Ge<sub>0.79</sub>Sn<sub>0.06</sub>/n-Ge diode. Interestingly, a complete ohmic behavior is observed in the diode with the Si<sub>0.04</sub>Ge<sub>0.95</sub>Sn<sub>0.01</sub> interlayer. For this diode, a rectifying behavior appeared just at a low temperature region below 150 K. (not shown). These J-V characteristics of Al/Si<sub>x</sub>Ge<sub>1-x-v</sub>Sn<sub>v</sub>/nGe diodes indicate a practical reduction in SBH compared to Al/*n*-Ge contact.

The Arrhenius plots of the saturation current density  $(J_S)$  for the SBH estimation are shown in **Fig. 4**. We confirmed that the thermionic emission current conduction is dominant from the ideality factor in forward *J*-*V* characteristics used for the estimation of  $J_S$  at each temperature. **Figure 5** shows SBHs estimated from slopes of the Arrhenius plots for Al/Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub>/*n*-Ge and Al/*n*-Ge diodes. SBHs of various metal/*n*-Ge contact are also summarized as a function of the metal work function for comparison [10]. The SBHs of Al/Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub>/*n*-Ge diodes are lower than that of the Al/*n*-Ge contact (0.69 eV), and the lowest SBH of 0.18 eV was achieved in the Al/Si<sub>0.04</sub>Ge<sub>0.79</sub>Sn<sub>0.01</sub>/*n*-Ge diode.

According to previous theoretical calculation,  $E_g$  of Si<sub>0.04</sub>Ge<sub>0.79</sub>Sn<sub>0.01</sub> and Si<sub>0.15</sub>Ge<sub>0.79</sub>Sn<sub>0.06</sub> at 0 K are estimated to be 0.72 and 0.73 eV, which are close to that of Ge (0.70 eV) [11]. Hence, Si<sub>0.04</sub>Ge<sub>0.79</sub>Sn<sub>0.01</sub> and Si<sub>0.15</sub>Ge<sub>0.79</sub>Sn<sub>0.06</sub> interlayers with such a small  $E_g$  in this study would hardly alleviate FLP as a wide-bandgap dielectric layer like Al<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub> [2]. Considering this fact, we suggest that a Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub> interlayer plays a role which shifts the pinning position at Al/n-Ge interface towards the conduction band edge of Ge, leading to the reduction in SBH of metal/*n*-Ge contact.

## 4. Conclusions

We investigated the impact of a  $Si_xGe_{1-x-y}Sn_y$  ternary alloy interlayer on the SBH of metal/*n*-Ge contact. By inserting

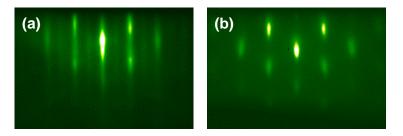
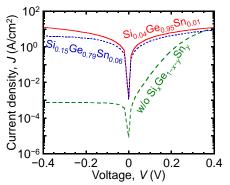
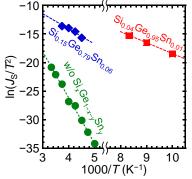




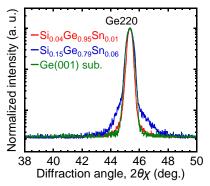

Fig. 1 *In-situ* RHEED patterns of (a) Si0.04Ge0.79Sn0.01 and (b) Si0.15Ge0.79Sn0.06 layers grown on Ge substrate.



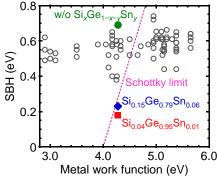
**Fig. 3** *J-V* characteristics of  $Al/Si_xGe_{1-x-y}Sn_y/n$ -Ge and Al/n-Ge Schottky diodes at 300 K.



**Fig. 4** Arrhenius plots of  $J_S/T^2$  estimated from forward *J-V* characteristics of Al/Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub>/*n*-Ge and Al/*n*-Ge Schottky diodes. *T* is the measurement temperature.


Si<sub>0.04</sub>Ge<sub>0.79</sub>Sn<sub>0.01</sub> and Si<sub>0.15</sub>Ge<sub>0.79</sub>Sn<sub>0.06</sub> layers at Al/*n*-Ge interface, SBHs can be reduced to 0.18 and 0.23 eV respectively. We successfully demonstrated that a lattice-matched Si<sub>x</sub>Ge<sub>1-x-y</sub>Sn<sub>y</sub> interlayer effectively reduces the SBH, which promises reducing the contact resistivity of metal/*n*-Ge contact with providing appropriate energy band structure, controllable Fermi level, and high thermal robustness for Ge-channel *n*-MOSFET applications.

#### Acknowledgements


Authors acknowledge Prof. K. Saraswat and Prof. Y. Nishi at Stanford University for our private communication. This work was partly supported by the Grant-in-Aid for Scientific Research (B) (No. 15H03565) of JSPS in Japan.

## References

- [1] T. Nishimura et al., Appl. Phys. Exp. 1, 051406 (2008).
- [2] J. Lin et al., Appl. Phys. Lett. 98, 092113 (2011).
- [3] G. Shine *et al*, in *Proc. SISPAD*, p. 69, Glasgow, Scotland, Sept. (2013).
- [4] K. Yamane et al., Appl. Phys. Lett. 96, 162104 (2010).
- [5] T. Nishimura et al., Microelectron. Eng. 88, 605 (2011).
- [6] K. Yamamoto et al., J. Appl. Phys. 118, 115701 (2015).
- [7] A. Suzuki et al., Appl. Phys. Lett. 107, 212103 (2015).
- [8] T. Asano *et al.*, Solid-State Electron. **110**, 49 (2015).
- [9] T. Yamaha et al., Appl. Phys. Lett. 108, 061909 (2016).
- [10] T. Nishimura et al., Appl. Phys. Lett. 91, 123123 (2007) etc.
- [11] P. Moontragoon et al., J. Appl. Phys. 112, 073106 (2012).



**Fig. 2** In-plane XRD profiles of  $Si_xGe_{1-x-y}Sn_y/Ge$  samples and Ge substrate around the Ge220 Bragg reflection.



**Fig. 5** The SBHs of  $Al/Si_xGe_{1-x-y}Sn_y/n$ -Ge and Al/n-Ge samples. SBHs of various metal/*n*-Ge contacts are also summarized as a function of the metal work function [10].