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Abstract 

A lateral spin injection device having a top-gate 
structure was fabricated. A clear spin injection from an 
Fe electrode into an n−-In0.04Ga0.96As channel was 
demonstrated through the observation of spin-valve 
signals in a cross nonlocal geometry. Furthermore, a 
gate control of spin-valve signals was achieved. Experi-
ments showed that the amplitude of the spin-valve sig-
nal under constant injection current conditions de-
creased when the channel was depleted by the gate 
voltage. These results indicate that the developed 
top-gate structure paves the way to implementing spin 
transistors.  

  
 
1. Introduction 

Electrical injection of spin-polarized electrons into a 
semiconductor channel and their control by a gate voltage 
are major prerequisites for creating viable semiconductor 
spintronic devices such as spin transistors, which feature 
nonvolatility, reconfigurable logic functions, and ultralow 
power consumption [1,2]. While there have been many 
reports on spin injection into GaAs, Si, or Ge, only a hand-
ful of experiments on the gate control of spin signals have 
been reported [3-5]. Moreover, the gate operation was done 
only in back-gate structure. However, the back-gate struc-
ture suffers from a low operation speed and a large power 
consumption due to a large parasitic capacitance. Thus, a 
top-gate structure is indispensable for practical applications. 
In this study we fabricated a spin injection device having a 
top-gate structure, and demonstrated a gate control of 
spin-valve signals in InGaAs channel.     

 

2. Experimental Method 
A layer structure consisting of (from the substrate side) 

a 250-nm-thick undoped GaAs buffer layer, a 700-nm-thick 
n–-In0.04Ga0.96As channel layer, a 15-nm-thick 
n−-In0.04Ga0.96As → n+-GaAs transition layer, and a 
15-nm-thick n+-GaAs layer was grown by molecular beam 
epitaxy (MBE) on semi-insulating GaAs(001) substrates. 
The doping concentration of the n−-In0.04Ga0.96As channel 
layer was 3 × 1016 cm−3 and that of the n+-GaAs layer was 5 
× 1018 cm−3 to form a narrow Schottky barrier. Samples 
were transferred to the second MBE chamber without ex-
posure to air and a 10-nm-thick Fe spin source layer and a 
10-nm-thick Al cap layer were then grown at room temper-
ature.  

The sample was then processed into a lateral spin 
transport device by using electron beam lithography and Ar 
ion milling techniques. The size of the injector contact and 
detector contact were 0.5 × 10 μm and 1.0 × 10 μm, respec-
tively, and the spacing between them was 6.0 μm. The 
top-gate electrode of Al was deposited on the 
n−-In0.04Ga0.96As channel between the injector and detector 
contact (Fig. 1). The size of the top-gate electrode was 2.0 
× 10 μm. Spin-dependent transport properties for lateral 
spin transport devices were evaluated in a four-terminal 
cross-nonlocal geometry where the nonlocal voltage (VNL) 
between contacts 3 and 1 was measured under a constant 
current (Ibias) supplied between contacts 2 and 4 at 4.2 K 
(Fig. 1). The negative VG was applied to the top-gate with 
respect to terminal 2, which was grounded. 
 

3. Results and Discussion 
   Figure 2 shows IV characteristics for (a) a Fe/n+-GaAs 
Schottky tunnel junction (injector/detector contact) and (b) 
an Al/n−-In0.04Ga0.96As Schottky junction (gate/channel 
contact) at 4.2 K. The IV curves for a Fe/n+-GaAs junction 
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Fig. 1. (a) Layer structure and (b) a lateral spin injection device 

with a top‐gate structure and circuit configuration. 
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exhibit nonlinear characteristics and are almost symmetric 
against the bias polarity, indicating that the tunneling con-
duction is dominant. The typical values of the re-
sistance-area products (R·A) was 130 kΩμm2, where R is 
the resistance which was evaluated from the slope of the 
IV curve at V = 0 V, and A is the junction area. The R·A 
value was close to our previous results [6]. The IV curve 
for an Al/n−-In0.04Ga0.96As junction, on the other hand, ex-
hibits a clear rectifying nature, indicating that the Schottky 
barrier was formed at Al/n−-In0.04Ga0.96As interface.  
   Figure 3 shows the VG dependence of the channel resis-
tivity () for VG from 0 to −1.4 V. The was estimated 
from the I-V characteristics, in which the voltage between 
contact-2 and contact-3 was measured while I was supplied 

between contact-1 and contact-4. The  increased by ap-
proximately 1.5 times when VG was changed from 0 to –1.4 
V, indicating a proper gate operation. 
   Figure 4 shows spin-valve signals at 4.2 K for a cross- 
nonlocal geometry at VG = 0, 1.0 and 1.4 V. The injection 
current was set to 40 μA. We observed clear spin-valve 
signals for all VG, indicating the injection of spin-polarized 
electrons into an n–-In0.04Ga0.96As channel. The amplitudes 
of the spin-valve signals decreased as |VG| increased. This 
contrasted with our previous results, in which the ampli-
tudes of the spin-valve signals increased as |VG| increased 
[5]. Although the origin of this discrepancy was not fully 
understood at present, this is the first demonstration of the 
gate control of spin signals through a top-gate structure. 
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Fig. 2. I‐V characteristics for (a) a Fe/n+‐GaAs Schottky                          Fig. 3. VG dependence of the channel resistivity (). 
tunnel junction (injector/detector contact) and (b) an   

Al/n−‐In0.04Ga0.96As Schottky junction.       
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Fig. 4. Spin‐valve signals at 4.2 K for a cross nonlocal geometry at VG = 0, −1.0 and −1.4 V. 
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