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Abstract

A lateral spin injection device having a top-gate
structure was fabricated. A clear spin injection from an
Fe electrode into an n -InoosGaossAs channel was
demonstrated through the observation of spin-valve
signals in a cross nonlocal geometry. Furthermore, a
gate control of spin-valve signals was achieved. Experi-
ments showed that the amplitude of the spin-valve sig-
nal under constant injection current conditions de-
creased when the channel was depleted by the gate
voltage. These results indicate that the developed
top-gate structure paves the way to implementing spin
transistors.

1. Introduction

Electrical injection of spin-polarized electrons into a
semiconductor channel and their control by a gate voltage
are major prerequisites for creating viable semiconductor
spintronic devices such as spin transistors, which feature
nonvolatility, reconfigurable logic functions, and ultralow
power consumption [1,2]. While there have been many
reports on spin injection into GaAs, Si, or Ge, only a hand-
ful of experiments on the gate control of spin signals have
been reported [3-5]. Moreover, the gate operation was done
only in back-gate structure. However, the back-gate struc-
ture suffers from a low operation speed and a large power
consumption due to a large parasitic capacitance. Thus, a

top-gate structure is indispensable for practical applications.

In this study we fabricated a spin injection device having a
top-gate structure, and demonstrated a gate control of
spin-valve signals in InGaAs channel.

2. Experimental Method

A layer structure consisting of (from the substrate side)
a 250-nm-thick undoped GaAs buffer layer, a 700-nm-thick
n-Ing 04Gag96As channel layer, a 15-nm-thick
n -IngsGaggeAs — n'-GaAs transition layer, and a
15-nm-thick n*-GaAs layer was grown by molecular beam
epitaxy (MBE) on semi-insulating GaAs(001) substrates.
The doping concentration of the n™-Ing04GaggsAs channel
layer was 3 x 10'® cm™ and that of the n*-GaAs layer was 5
x 108 ¢cm™ to form a narrow Schottky barrier. Samples
were transferred to the second MBE chamber without ex-
posure to air and a 10-nm-thick Fe spin source layer and a
10-nm-thick Al cap layer were then grown at room temper-
ature.
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The sample was then processed into a lateral spin
transport device by using electron beam lithography and Ar
ion milling techniques. The size of the injector contact and
detector contact were 0.5 x 10 pm and 1.0 X 10 um, respec-
tively, and the spacing between them was 6.0 pm. The
top-gate electrode of Al was deposited on the
n -Ing 04Gao9sAs channel between the injector and detector
contact (Fig. 1). The size of the top-gate electrode was 2.0
x 10 pm. Spin-dependent transport properties for lateral
spin transport devices were evaluated in a four-terminal
cross—nonlocal geometry where the nonlocal voltage (Vi)
between contacts 3 and 1 was measured under a constant
current (lyias) supplied between contacts 2 and 4 at 4.2 K
(Fig. 1). The negative Vg was applied to the top-gate with
respect to terminal 2, which was grounded.

3. Results and Discussion

Figure 2 shows |-V characteristics for (a) a Fe/n"-GaAs
Schottky tunnel junction (injector/detector contact) and (b)
an Al/n"-Ing04sGaoosAs Schottky junction (gate/channel
contact) at 4.2 K. The -V curves for a Fe/n"-GaAs junction
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Fig. 1. (a) Layer structure and (b) a lateral spin injection device
with a top-gate structure and circuit configuration.



exhibit nonlinear characteristics and are almost symmetric
against the bias polarity, indicating that the tunneling con-
duction is dominant. The typical values of the re-
sistance-area products (R-A) was 130 kQum?, where R is
the resistance which was evaluated from the slope of the
I-V curve at V = 0 V, and A is the junction area. The R-A
value was close to our previous results [6]. The -V curve
for an Al/n"-Ing0sGagosAs junction, on the other hand, ex-
hibits a clear rectifying nature, indicating that the Schottky
barrier was formed at Al/n"-Ing04GagosAs interface.

Figure 3 shows the Vg dependence of the channel resis-
tivity (p) for Vg from 0 to —1.4 V. The pwas estimated
from the I-V characteristics, in which the voltage between
contact-2 and contact-3 was measured while | was supplied

between contact-1 and contact-4. The p increased by ap-
proximately 1.5 times when Vg was changed from 0 to —1.4
V, indicating a proper gate operation.

Figure 4 shows spin-valve signals at 4.2 K for a cross-
nonlocal geometry at Vg =0, —1.0 and —1.4 V. The injection
current was set to 40 pA. We observed clear spin-valve
signals for all Vg, indicating the injection of spin-polarized
electrons into an n-Ing04GagosAs channel. The amplitudes
of the spin-valve signals decreased as |Vg| increased. This
contrasted with our previous results, in which the ampli-
tudes of the spin-valve signals increased as |Vg| increased
[5]. Although the origin of this discrepancy was not fully
understood at present, this is the first demonstration of the
gate control of spin signals through a top-gate structure.
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