Epitaxial Growth and Magnetic Properties of Fe₃O₄ Film on Si(111) Substrate

Nozomi Takahashi¹, Yuta Yamamoto¹, Takashi Yanase², Toshihiro Shimada² and Taro Nagahama²

 ¹ Graduate School of Chemical Sciences and Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku, Sapporo 060-8628, Japan
Phone: +81-11-706-7113 E-mail: nozomi86takahashi@eis.hokudai.ac.jp
² Graduate School of Engineering, Hokkaido University
Kita 13, Nishi 8, Kita-ku, Sapporo 060-8628,Japan

Abstract

This study reports on the epitaxial Fe₃O₄ films on Si(111) substrate. To prevent the oxidization of the Si surface by introducing oxygen into chamber, γ -Al₂O₃ with spinel structure was inserted between Si substrate and Fe₃O₄ film. The Fe₃O₄ films were high-quality epitaxial films with two in-plane domains rotated by 180 degree. The magnetization properties showed that the Fe₃O₄ layer had in-plane magnetization.

1. Introduction

In the spintronics research fields, spinel ferrites are promising materials for spintronics applications because they have useful magnetic properties and high Curie temperature. In particular, Fe₃O₄ has been expected to be the spin source in the devices such as magnetic tunnel junctions^[1] because Fe_3O_4 is a half metallic material^[2]. However, direct fabrication of Fe₃O₄ on Si substrates is difficult because the surface of Si is oxidized by introducing oxygen into the chamber. Since Si is one of the universal and inexpensive substrates, it is important to fabricate spinel ferrites on Si substrate. In this study, to prevent the oxidization of the Si surface, we inserted the γ -Al₂O₃ with spinel structure as a buffer layer between Si and Fe₃O₄. We chose the γ -Al₂O₃ because it is possible to fabricate the thin film on Si substrate at ultra-high vacuum pressure(<10⁻⁶ Pa)^[3] and same crystal structure. The heterostructure of Si substrate/ γ -Al₂O₃/ Fe₃O₄ might be a part of magnetic tunnel junctions or spin injection devises because Fe₃O₄ has half metallic property.

2. Experiments

The γ -Al₂O₃ and Fe₃O₄ were grown by the molecular beam epitaxy method. The sample structure was Si(111) / γ -Al₂O₃ 2.4 nm /Fe₃O₄ 50 nm /amorphous-Al₂O₃ 2.0 nm. The γ -Al₂O₃, which is a nonmagnetic insulator, was used as buffer layer. The lattice constant is about 0.79 nm, that is just two third parts of Si^[4]. The γ -Al₂O₃ film was formed at 900°C^[5] and annealed at 300°C for 30 minutes. Then, the Fe₃O₄ film was formed by reactive deposition at 300°C in O₂ atmosphere of 4.0×10⁻⁴ Pa. The epitaxial growth and the surface structure were confirmed by reflection high energy electron diffraction (RHEED), atomic force microscope (AFM), X-ray diffraction (XRD) and transmission electron microscope (TEM). Cross-sectional samples for TEM were prepared using conventional mechanical polishing and dimpling techniques. The magnetic properties of Fe_3O_4 were measured by vibrating sample magnetometer (VSM).

3. Results and Discussion

The γ -Al₂O₃ film played a role of preventing the oxidization of Si surface and buffer layer for epitaxial growth. To confirm the epitaxial growth, we used RHEED. As shown in Fig. 1(a) and (b), The RHEED patterns of γ -Al₂O₃ and Fe₃O₄ were clear streak pattern. For surface morphology, the Root Mean Square (RMS) values of γ -Al₂O₃ and Fe₃O₄ were estimated 0.41 nm and 0.54 nm by AFM measurement. It means that both γ -Al₂O₃ and Fe₃O₄ were considered to be flat epitaxial films.

As shown in Fig. 2(a), the XRD diffraction pattern of θ -2 θ measurement exhibits four peaks (18.3°, 37.2°, 57.2°, 79.4°), which is related to the diffraction of $Fe_3O_4(111)$, (222), (333) and (444). It indicated that the Fe_3O_4 film was (111)-oriented without other orientations or phases. ϕ -scan measurements of Si(311) and Fe₃O₄(4-40) also exhibited that the Fe_3O_4 was epitaxial as shown in Fig. 2(b). The six peaks of Fe₃O₄ (4-40) appeared as intervals of 60°, which indicates the presence of two in-plane Fe₃O₄ domains. It means that the domains were rotated by 180° and the epitaxial relationships are [11-2]Fe₃O₄(111) and [-1-12]Fe₃O₄(111) parallel to [11-2]Si(111).

As shown in Fig. 3, the cross-section TEM image and High-angle Annular Dark Field Scanning (HAADF) image of heterostructure taken along the Si[1-10] zone axis exhibits that the Fe atoms of Fe₃O₄ were aligned orderly and the

Fig. 1. RHEED patterns of (a) γ -Al₂O₃ and (b) Fe₃O₄

Fig. 2. X-ray diffraction patterns of (a) θ -2 θ measurement (b) ϕ -scan measurement

Fig. 3. (a)TEM images of Si(111)/ γ -Al₂O₃/Fe₃O₄ (b)HAADF image of Fe₃O₄ (c) The spinel structure lattice along the [1-10] zone axis

Fig. 4. (a) Hysteresis curves obtained from VSM measurements at RT (b) Dependence of resistance on temperature of Fe_3O_4 film

intervals between atoms were approximately corresponded to the spinel structure lattice parameter (5.14Å). In addition, γ -Al₂O₃ layer seemed to be amorphous which is inconsistent with RHEED observation. The reason is unclear, however the crystalline morphology might be changed during the growth of Fe₃O₄. The interface between γ -Al₂O₃ and Fe₃O₄ was more unclear than the interface between Si substrate and γ -Al₂O₃. The lattice mismatch between γ -Al₂O₃ and Fe₃O₄ is 5.1%, which is larger than that between Si substrate and γ -Al₂O₃. Therefore, the Fe₃O₄ interface around the γ -Al₂O₃ is considered to be disordered.

The magnetization curves at RT for the Fe_3O_4 films are plotted in Fig. 4(a), where the directions of the magnetic field were in-plane[11-2], in-plane[1-10] and out-of-plane[111]. The saturation magnetization (Ms) was 580 emu/cc for all magnetic field directions. the remanent magnetization (Mr), the coercive field (Hc), and The remanent magnetization ratio (Mr/Ms) in the magnetic field along [11-2] were 280 emu/cc, 500 Oe, and 0.48, those for [1-10] were same, and those for [111] were 47 emu/cc, 225 Oe, and 0.08. In other words, The Fe₃O₄ layer had in-plane magnetization.

Fig. 4(b) shows that the dependence of the resistance on temperature for Fe₃O₄ film grown on the γ -Al₂O₃ buffer layer. The resistivity of the film at 300 K was $2.5 \times 10^{-4} \Omega$ cm. The curve shows an abrupt change at around 120 K, which corresponds to the Verwey transition^{[6][7]} of Fe₃O₄. It means that the Fe₃O₄ film was considered to be high-quality.

3. Summary

We fabricated epitaxial Fe_3O_4 film on Si substrate by inserting γ -Al₂O₃ buffer layer. From the XRD measurement and TEM observation, Fe_3O_4 was (111)-oriented. The (111)-oriented Fe_3O_4 films grow with two possible in-plane domains. The magnetic hysteresis and the Verwey transition of Fe_3O_4 were clearly observed.

Acknowledgements

We would like to express our gratitude to Prof. Uemura's group, Prof. Tokeshi's group for their cooperation in the microfabrication, Prof. Sakaguchi's group for their cooperation in TEM observation and the Open Facility (Hokkaido University's Sousei Hall) for allowing us to use their XRD instrument.

References

[1] T. Nagahama, Y. Matsuda, K. Tate, T. Kawai, N. Takahashi, S. Hiratani, Y. Watanabe, T. Yanase, and T. Shimada, Appl. Phys. Lett. **105**, 102410 (2014).

[2] A. Yanase and K. Shiratori, J. Phys. Soc. Jpn. 53, 312 (1984)

[3] C. Merckling, M. El-Kazzi, V. Fravre-Nicolin, M. Gendry, Y. Robach, G. Grenet, and G. Hollinger, Thin Solid Films **515**, 6476 (2007).

[4] C. Merckling, M. El-Kazzi, G. Saint-Girons, G. Hollinger, L. Largeau, G. Patriarche, V. Favre-Nicolin, and O. Marty, J. Appl. Phys. **102**, 024101 (2007).

[5] S. Y. Wu, M. Hong, A. R. Kortan, J. Kwo, J. P. Mannaerts, W. C. Lee, and Y. L. Huang, Appl. Phys. Lett. 87, 091908 (2005).

[6] E. Verwey, Nature **144**, 327 (1939).

[7] T. Kado, H. Saito, and K. Ando, J. Appl. Phys. 101, 09J511 (2007).