Room-temperature Fabrication of Amorphous IGZO TFTs with Co-sputtered Zr_xSi_{1-x}O₂ Gate Dielectrics

Pang-Yi Liu¹, Shui-Jinn Wang^{*1, 2}, Chien-Hsiung Hung¹, Chien-Hung Wu³, Nai-Sheng Wu¹, Hao-Ping Yan¹, and Tseng-Hsing Lin¹

¹Institute of Microelectronics, Dept. of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan.

²Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan

³Department of Electronics Engineering, Chung Hua University, Hsinchu, Taiwan.

*Phone: +886-6-2763882, E-mail: <u>sjwang@mail.ncku.edu.tw</u>

Abstract:

The use of co-sputtered zirconium silicon oxide ($Zr_xSi_{1-x}O_2$) gate dielectrics to improve gate controllability of amorphous indium gallium zinc oxide (α -IGZO) thin-film transistors (TFTs) is proposed and demonstrated. Through adjusting the sputtering power of the SiO₂ target with that of the ZrO₂ target kept at 100 W, a dielectric constant ranging from about 28.1 to 7.8 is obtained. Immunity of poly-structure formation of the Zr_xSi_{1-x}O₂ dielectrics at evaluated temperatures (600 °C) is also examined. Our experimental results reveal that the Zr_{0.85}Si_{0.15}O₂ gate dielectric prepared at a power ratio of ZrO₂:SiO₂=100 W:50 W could lead to a significantly improved device performance of subthreshold swing (103 mV/dec) and field effect mobility (33.76 cm²/V·s).

1. Introduction

In recent years, amorphous indium gallium zinc oxide (α -IGZO) thin-film transistor (TFT) has been widely used for flat-panel displays (FPDs) applications due to its wide band gap, high mobility, and high uniformity of device performance compared with conventional Si-based TFTs [1]. In order to strengthen field effect and reduce gate leakage current, attempts have been made to seek alternative high- κ dielectrics for α -IGZO TFTs [2]. Comparing with SiO₂ gate dielectric, nevertheless, high- κ materials usually have a larger amount of intrinsic defects which could degrade the device performances [3]. Zirconium dioxide (ZrO₂) is one of the most promising materials, it shows an excellent thermal stability especially when a suitable composition of silicon is incorporated. It is reported that Si ingredients could reduce the density of bulk defects and improve the quality of interface with IGZO channel layer [4]. In this study, effects of Si composition in the Zr_xSi_{1-x}O₂ dielectrics on the performance of α -IGZO TFTs are examined. The suitable RF power ratio for the co-sputtering of ZrO₂ and SiO₂ targets at room temperature to maximize the role of Zr_xSi₁. $_xO_2$ dielectrics in α -IGZO TFTs is investigated. The hysteresis characteristics of the α-IGZO TFTs with Zr_xSi₁-_xO₂ gate dielectrics are also discussed.

2. Experimental

An 8.5 ± 0.5 -nm-EOT $Zr_xSi_{1-x}O_2$ layer as gate dielectric was deposited on n⁺-Si substrate by RF cosputtering of ZrO₂ and SiO₂ targets in Ar ambient at room temperature. For the deposition of $Zr_xSi_{1-x}O_2$ dielectric, various sputtering power (0, 50, 100, and 150 W) were used for the SiO₂ target with the sputtering power for the ZrO₂ target was kept at 100 W. Subsequently, a 25-nmthick α -IGZO channel layer was deposited using an IGZO target (In₂O₃:Ga₂O₃:ZnO=1:1:1) in Ar ambient by RF sputtering. Finally, a 25-nm-thick Al-doped ZnO (AZO) as a buffer layer and a 200-nm-thick Titanium (Ti) metal electrode as the source and drain (S/D) contact were deposited by RF sputtering and e-beam evaporation, respectively. The cross-sectional schematic of the α -IGZO TFTs with Zr_xSi_{1-x}O₂ gate dielectrics is shown in Fig. 1 with a width-to-length ratio of 200 µm/20 µm.

Fig. 1 Schematic of the α -IGZO TFTs with $Zr_xSi_{1-x}O_2$.

3. Results and Discussion

Based on X-ray photoelectron spectroscopy (XPS), C-V measurement, and spectroscopic ellipsometry (SE), the κ -value, the Si compositions, and the surface roughness in the Zr_xSi_{1-x}O₂ films prepared under different sputtering powers for SiO₂ were shown in Fig. 2 and Table I, respectively. The κ-value of Zr_xSi_{1-x}O₂ dielectrics are of 28.1, 26.5, 13.4, and 7.8 for the sample prepared with a cosputtering power ratio (ZrO2 (W):SiO2 (W)) of 100:0 (ZrO₂), 100:50 (Zr_{0.85}Si_{0.15}O₂), 100:100 (Zr_{0.45}Si_{0.55}O₂), and 100:150 ($Zr_{0.2}Si_{0.8}O_2$), respectively. It indicates that the κ value and Si/(Si+Zr) ratio could be adjusted by the cosputtering power ratio. Our results indicate that the $Zr_{0.85}Si_{0.15}O_2$ film has the smoothest surface (roughness < 1 nm) as compared with the other samples. Accordingly, suppressed surface scattering and reduced interface trap density after the α -IGZO channel layer deposition can be expected. Note that the fabricated α -IGZO TFTs with the above mentioned four types of gate dielectric are referred as device A, B, C, and D, respectively.

Fig. 2 Dielectric constant and Si/(Si+Zr) ratio of $Zr_xSi_{1-x}O_2$ film as a function of co-sputtering power ratio of ZrO_2 and SiO_2 .

Table I Si ingredients and Dielectric constant of $Zr_xSi_{1-x}O_2$ films with different co-sputtering power ratios.

Power ratio: ZrO ₂ (W):SiO ₂ (W)	Si/(Si+Zr) (%)	Dielectric	κ	Roughness (nm)
100:0	0	ZrO ₂	28.1	5.27
100:50	15	Zr0.85Si0.15O2	26.5	<1
100:100	55	Zr0.45Si0.55O2	13.4	3.01
100:150	80	Zr0.2Si0.8O2	7.8	4.79

Figure 3 shows the XRD analysis of ZrO_2 and $Zr_xSi_{1-x}O_2$ films without and with PDA for 10 min in O_2 at 600 °C.

It is seen that the as-deposited ZrO_2 layer has a polycrystalline structure. On the contrary, the $Zr_xSi_{1-x}O_2$ film remains amorphous state even after intentional postdeposition annealing (PDA) at 600 °C in O_2 ambient, which favors for leakage current reduction. Figure 4 shows the J-V curve of ZrO_2 and $Zr_xSi_{1-x}O_2$ films. With the incorporation of SiO₂, in addition to the stable amorphous structure, the band gap of $Zr_xSi_{1-x}O_2$ increases as increasing the SiO₂ sputtering power, as a result, the leakage current density is largely suppressed. These results suggest that the $Zr_xSi_{1-x}O_2$ film should be more appropriate for gate dielectric than ZrO_2 films.

Fig. 3 The XRD analysis of ZrO₂ and Zr_xSi_{1-x}O₂ films without and with PDA for 10 min in O₂ at 600 °C.

Fig. 4 The J-V characteristics of n^+ -Si/Zr_xSi_{1-x}O₂/Ti capacitor structure.

Fig. 5 The transfer characteristics of the α -IGZO TFTs with ZrO₂ and Zr_xSi_{1-x}O₂ gate dielectrics.

Figure 5 shows the transfer characteristics of the α -IGZO TFTs with ZrO₂ and Zr_xSi_{1-x}O₂ films. The extracted device electrical parameters are listed in Table II. It reveals that α -IGZO TFT with Zr_{0.85}Si_{0.15}O₂ (device B) shows the best electrical performance with highest I_{on}/I_{off} of 1.96×10⁷, lowest subthreshold swing (SS) of 103 mV/dec, highest field-effect mobility (μ_{FE}) of 33.76 cm²/V·s, lowest D_{it} of 1.90×10¹² cm⁻²eV⁻¹, lowest hysteresis ΔV_{hys} of 0.30 V. It suggests that D_{it} at Zr_xSi_{1-x}O₂/IGZO interface can be effectively suppressed and the gate controllability is enhanced. Hence a lower SS, higher μ_{FE} , and higher I_{on}/I_{off} can be obtained from a suitable Si ingredient incorporation. However, the devices with Zr_{0.45}Si_{0.55}O₂ and Zr_{0.2}Si_{0.8}O₂ gate dielectrics show poor performance, probably due to excessive Si ingredients in Zr_xSi_{1-x}O₂ lead to rough

surfaces and degrade the quality of the $Zr_xSi_{1-x}O_2/IGZO$ interface.

Fig. 6 shows the hysteresis characteristics of the α -IGZO TFTs with ZrO₂ and Zr_{0.85}Si_{0.15}O₂ gate dielectrics. It indicates that Device B has the lowest ΔV_{hys} (0.30 V) among all prepared devices. It suggests that suppressed interface trap density and reduced gate leakage current can be achieved from the Zr_xSi_{1-x}O₂ dielectric film with a suitable co-sputtering ZrO₂ and SiO₂[5].

Fig. 6 The transfer characteristics of the α -IGZO TFTs with ZrO₂ and Zr_{0.85}Si_{0.15}O₂ gate dielectrics under the forward (V_{GS}=-1 to 4 V) and reverse (V_{GS}=4 to -1 V) sweeps.

Table II Comparisons of device parameters of α -IGZO TFTs with ZrO₂ and Zr_xSi_{1-x}O₂ gate dielectrics.

Device	$I_{on}\!/I_{off}$	V _{TH} (V)	SS (mV/dec)	μ_{FE} (cm ² /V·s)	Dit (cm ⁻² eV ⁻¹)	ΔV _{hys} (V)
Α	1.03×10 ⁶	1.49	141	27.69	3.32×10 ¹²	0.74
В	1.96×10 ⁷	0.96	103	33.76	1.90×10 ¹²	0.30
С	2.00×10^{5}	2.40	213	16.61	6.50×1012	0.42
D	3.54×10 ³		424	2.81	1.54×10 ¹³	-
[5]	7.50×10 ⁵	4.26	310	4.3	7.00×10 ¹²	1.78
[6]	1.20×10^{6}	-1.0	240	8.4	-	-

4. Conclusions

Improved performance of α -IGZO TFTs with Zr_xSi_{1-x}O₂ gate dielectrics have been successfully fabricated by co-sputtering of ZrO₂ and SiO₂ target at room temperature. The κ -value of Zr_xSi_{1-x}O₂ could be adjusted through the sputtering power ratio. In addition, the incorporation of Si in Zr_xSi_{1-x}O₂ film could avoid of poly-crystallization even after PDA at 600 °C. In addition, it is found that the Zr_{0.85}Si_{0.15}O₂ film prepared at a power ratio of ZrO₂:SiO₂=100 W:50 W has the lowest roughness, which could serve best as the gate dielectric to α -IGZO to suppress surface scattering and interface tap density. Our experiments show that the Zr_{0.85}Si_{0.15}O₂ gate dielectric could lead to a significantly improved device performance with reduced SS (103 mV/dec) and enhanced μ_{FE} (33.76 cm²/V·s).

Acknowledgements

This work was supported by the Ministry of Science and Technology (MOST), Taiwan, under contract No. MOST 104-2221-E-006-066 and MOST 104-2221-E-006130-MY3. The authors would like to thank the Advanced Optoelectronic Technology Center, National Cheng Kung University, Taiwan, for equipment access and technical support.

References

- [1] J. S. Park et al., Thin Solid Films. 520 (2012) 1679.
- [2] Y. S. Chun et al., Microelectron. Eng. 88 (2011) 1590.
- [3] J. Robertson et al., Mater. Sci. Eng. R. 88 (2015) 1.
- [4] D. Cho et al., Electron. Mater. Lett. 9 (2013) 381.
- [5] L. X. Qian et al., Microelectron. Rel. 54 (2014) 2396.
- [6] F. H. Chen et al., IEEE T. Dielect. El. In. 22 (2015) 3.