Transport property of NbSe₂/WSe₂ van der Waals Junction

Yohta Sata¹, Rai Moriya¹, Yusuke Hoshi¹, Satoru Masubuchi¹, Kenji Watanabe² Takashi Taniguchi², Keiji Ueno³, and Tomoki Machida^{1,4}

> ¹ Institute of Industrial Science, University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

Phone: +81-3-5452-6158 E-mail: vsata@iis.u-tokvo.ac.jp

² National Institute for Materials Science

1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

³ Department of Chemistry, Graduate School of Science and Engineering, Saitama University

Saitama 338-8570, Japan

⁴ Institute for Nano Quantum Information Electronics, University of Tokyo

4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

Abstract

A transition metal dichalcogenide (TMD) NbSe₂ has recently received considerable attention due to its excellent metallic behavior even down to monolayer and significantly larger work function (~6 eV) among other TMDs. Therefore this material can be an efficient hole injecting electrode. Here, we show transport properties of NbSe₂/WSe₂ van der Waals (vdW) heterojunction fabricated by mechanical exfoliation and dry transfer. Two NbSe₂ flakes are transferred on WSe₂ flake to realize van der Waals contacts and the device is encapsulated by h-BN. The current transport measured between two NbSe₂ contacts through the WSe₂ channel exhibited p-type field effect transistor characteristics having small Schottky barrier height (~50 meV) at the vdW interface. The results suggest the vdW NbSe₂ contact is the excellent material to make p-type contact for TMDs. Adopting NbSe₂ as a contact material will give us the opportunity to explore a lot of unique characteristics specific to valence band transport such as valleytronics or vertical field effect transistors [1,2].

1. Introduction

Semiconducting TMDs such as MoS₂ and WSe₂ revealed unique layered crystal structure connected together by vdW inter-layer interaction. These crystals can be exfoliated down to monolayers and different layered crystals can be stacked together to build vdW heterostructures. The TMD-based vdW heterostructures have been drawn considerable attention owing to their potentially high performance for electronics and optoelectronics devices. Yet, the performances of these devices are occasionally limited by the large contact resistance between metal electrode and TMD. The preparation of highly transparent electrical contact to TMD has been extensively studied in last half decade. Most of previous studies used evaporation of metals on TMD to prepare the contacts, yet surface pinning or interface reaction at the metal/TMD interface are still serious issues. More recently, instead of the evaporated metal/TMD contact, the vdW contact between metallic layered material/TMD junctions are proposed to overcome the issues mentioned above [3]. Therefore, the detailed study on the transport property in such vdW junctions is highly demanded. NbSe₂ is known to be a metallic TMD and becomes superconducting at low temperature. Its work function of 6.0 eV is considerably higher than the valence band energy of semiconducting TMDs such as MoS_2 (5.6 eV) and WSe_2 (5.2 eV) [4]; therefore it is a great candidate to build a vdW contact for the purpose of hole injection. Here we fabricated NbSe₂/WSe₂ vdW junction and studied its transport properties.

2. Device fabrication procedure

Figure 1 shows the photograph and the schematic illustration of the fabricated device. By using mechanical exfoliation and PDMS-based transfer technique [5], stack of the layered materials are fabricated on the 300 nm SiO₂/Si substrate. Highly doped Si substrate works as a back gate electrode. First, hexagonal boron nitride (h-BN) with the thickness of ~30 nm is deposited on the substrate, followed by the transfer of few monolayer thick of WSe2. Next, two NbSe₂ flakes are individually transferred to make contacts with WSe₂, and subsequently WSe₂ channel is capped by top h-BN flake with the thickness of ~30 nm. The width and length of the WSe₂ channel is 3.5 and 4 μ m, respectively. Finally, electrical contacts to NbSe₂ are made with 40 nm Au/40 nm Ti fabricated by electron beam (EB) lithography and EB evaporation. All device fabrications are conducted at room temperature without introducing any heat treatment [6]. The device was loaded into the variable temperature cryostat, where the device was annealed at ~140 °C in He atmosphere for 6 hours prior to the electrical characterization.

3. Results

The back gate voltage V_{BG} dependence of the current *I* flow between the NbSe₂ contacts at different source-drain voltage V_{SD} at room temperature is presented in Fig. 2. This figure shows clear p-type field effect transistor characteristics. The current value in negative V_{BG} side (hole doped) is significantly larger than that of positive V_{BG} side (electron doped), suggesting that the NbSe₂ has much smaller potential barrier for hole injection than electron injection. We

obtained current on-off ratio of 10^4 with on current value order of micro ampere at $V_{SD} = 0.5$ V. These properties are superior to that of NbSe₂/W_xNb_{1-x}Se₂/WSe₂ vdW contacts fabricated by CVD method [7]. We demonstrated high quality NbSe₂/WSe₂ vdW contact using exfoliation method.

The *I*- V_{SD} curves at $V_{BG} = -50$ V at room temperature (300 K) and 4 K are presented in Fig. 3 showing non-linear behavior. This suggests Schottky barrier formation at NbSe₂/WSe₂ interface. Fig. 4(a) presents temperature dependence of the drain current *I* at $V_{SD} = 0.1$ V. Arrhenius plot has been created from these curves, followed by the fitting according to the thermionic emission theory. The value of the barrier height was determined when the gate voltage dependence of the barrier height deviated from linear tendency as shown in Fig. 4(b). We obtained the Schottky barrier height at NbSe₂/WSe₂ interface of about 50 meV. The small Schottky barrier height suggests NbSe₂ works as a good hole injector to WSe₂.

4. Conclusion

In summary, we made $WSe_2/NbSe_2$ heterostructures encapsulated by h-BN by using mechanical exfoliation and PDMS dry transfer technique. The device showed the characteristics of a p-type field effect transistor, and the small barrier height was obtained by Arrhenius plot, inferring that vdW NbSe₂ contact could be a good p-type contact to WSe_2 and other TMDs.

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scien tific Research on Innovative Areas "Science of Atomic Layers" and "Nano Spin Conversion Science" from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and the Project for Developing Innovation Systems of MEXT and Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) and CREST, Japan Science and Technology Agency (JST).

References

- [1] R. Moriya et al., Appl. Phys. Lett. 105 (2014) 083119.
- [2] Y. Sata et al., Jpn. J. Appl. Phys. 54 (2015) 04DJ04.
- [3] Y. Liu et al., Science Advances 2 (2016).
- [4] S. McDonnell et al., ACS Nano 8 (2014) 6265.
- [5] A. Castellanos-Gomez et al., 2D Materials 1 (2014) 011002.
- [6] N. Yabuki et al., Nature Commun. 7 (2016).
- [7] A. R. Kim *et al.*, *Nano Lett.* **16** (2016) 1890.

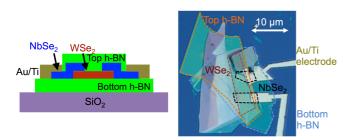


Fig. 1 (a) The device structure of $WSe_2/NbSe_2$ heterostructure encapsulated with h-BN. (b) Photograph of the device.

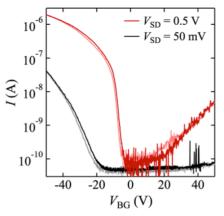


Fig. 2 V_{BG} dependence of the drain current *I* at different V_{SD} at room temperature.

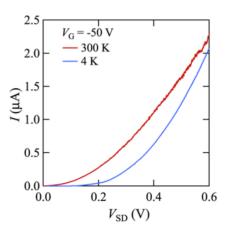


Fig. 3 *I-V* characteristics of the device measured at 300 K and 4 K at V_{BG} = -50 V.

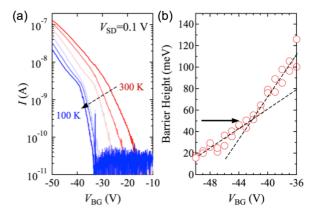


Fig. 4 (a) Temperature dependence of $I-V_{\rm G}$ characteristics of the device measured at $V_{\rm SD} = 0.1$ V. (b) Gate voltage dependence of barrier height obtained from the fitting of Arrhenius plot.