The Experimental Observations of a New Dielectric-fuse Breakdown in a Bilayer-RRAM Devices to Realize the OTP Functionality

Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Taiwan

Abstract—An RRAM realizes switchable states between SET/RESET by the modulation of filament conduction. However, RRAM maintains its window in a small range between 10X and 100X, which suffers from serious disturbances of switching states during operation. To realize a much larger window, especially for the OTP functionality in a RRAM device, we proposed a dielectric-fuse(dFuse) breakdown mechanism used in RRAM structure, which results in a fairly large window (105-order) and is immune to the disturbance of applying voltage. To understand the formation of dFuse breakdown, random-telegraph noise (RTN) technique has been applied to illustrate the progression of the filament path with evolution of time. The results show that the path behaves like a cone, widening at the bottom electrode and narrowing on the top, with a neck and waist near 2 electrodes. More interestingly, the neck of this cone-shape filament is broken during the reset and set, but its waist is ruptured during the dFuse state.

1. Introduction
Embedded memory has a strong demand in IoT era. OTP has become the most promising one for its easy and cost-effective integration on SoC and excellent data-retention. Many solutions can realize the functionality of OTP, including the electro-migration of metal/poly liner, dielectric hard-breakdown and dielectric-fuse(dFuse) breakdown in a gate MIS of CMOS devices [1-3]. However, if one would like to implement RRAM as OTP by the conventional existing SET/RESET operations, the high disturbance between high-resistance-state (HRS) and low-resistance-state(LRS) will make an unstable storage and raise the issue of retention degradation [4]. The main concept of this work is to understand how bilayer RRAM can become an OTP by using dielectric-fuse (dFuse) breakdown mechanism. The mechanism of dFuse and other operations, including SET and reset in RRAM to perform the functionality of OTP will be firstly extensively studied by using an RTN profiling technique, and the generation and evolutions of these forms during operations will be extensively studied. As a result, these new understanding of filament-formation mechanisms will be a foundation to implement the OTP by using ion-vacancy based conduction mechanisms.

2. Device Preparation
A bilayer-RRAM has been prepared by stacking a 6nm HfON on 1nm Al2O3 between TiN as the top electrode-TE and Pt as the bottom electrode-BE before a 400°C and 3 minutes post-metal-anneal to enhance the quality of devices, Fig.1. The area of device is 0.1μm2.

3. Results and Discussion
A. A Dielectric-fuse Mechanism in MIM structure
Fig. 2 is DC sweep of dFuse-RRAM characteristics. Except for regular SET & RESET, we apply a higher but a short pulse to RRAM, and its current is abruptly dropped from a steep cliff (the blue curve) and cannot be recovered anymore, similar to dielectric-fuse breakdown found in HKMG CMOS devices [3]. What happened here is that the thinner layer, Al2O3, creates a destructive breakdown so that Al2O3 dielectric becomes porous and cannot conduct the electrostatic anymore. Therefore, between TE and BE, no current flow was measured. We call this dielectric-fuse (dFuse). Moreover, we observed an abundant of RTN traps (Fig. 3), and it is believed that RTN traps are deeply involved in transition mechanisms of RRAM states. RTN technique was then applied to observe the generated traps which are closely related to the measured zig-zag waveform in Fig. 4 and a two-level waveform as shown in Fig. 5, which representation [4]. An electron trapping or detrapping by a trap in RRAM MIM. When the trap captures an electron, current increases correspondingly; while the current reaches to a low level, an electron is then released from this trap. Fig. 6(a) is a trap-accumulation path induced by electrons (the red) and vacancies (the blue) respectively. The electron-induced path interacts with TE, while the vacancy-induced path interacts with BE, which can be proved by Fig. 6(b), in which the slope of the electron-induced one is positive, and the slope of the vacancy-induced one is negative. Between both, we can see that the filament is formed in the grey area of Fig. 6(a). Fig. 6(c) shows the changes of current amplitudes of RTN traps in the filament of Fig. 6(a). 2 critical regions exhibit the giant amplitudes of RTN signals, (e.g., ΔI/It,high>40%). One of these critical regions is near TE, called “dFuse state”, therefore it is reasonable to assume that the current in filament will be cutoff once the neck or the waist disappears because the amplitude of the RTN traps is largely induced. Moreover, the neck length in this profile of forming filament is about 1.1nm, which is in good agreement with the previous reported results, Fig. 6(d) [6-9]. Fig. 6(e) shows the measured current transient with evolution of time, in which the process of filament generation can be divided into 4 phases, from initial sparse-and-discrete trap distribution to form small and sub-group paths, finally complete filament formation.

C. The Observation of Filament During dFuse
RESET procedure has been demonstrated in Fig. 7. The neck is broken in the reset-filament profile; the neck length is ~1.5nm, which is induced by vacancy-recovery from back-diffused oxygen ions in TiN of TE. The broken neck causes HRS for RRAM. On the other hand, in the SET operation, Fig. 8, the filament growth is different from those originally created filament paths during the forming and SET, and the SET filament path between the red and blue curves converges from the original forming-created broader filament (the grey region) to a narrower filament profile, named “waist”, because at the beginning, the values of resistance are kept at a relatively low level but gradually increase and converge to a more stable high level state during cycles.

D. The Observation of Filament During dFuse
Let’s revisit the blue curve in Fig. 2. By applying a higher voltage pulse to the RRAM, we can see a new physical phenomenon, called dFuse, has been implemented in an MIM structure that has been able to provide a larger window of 105 times in an OTP memory. Based on a unique technique that we developed before, named Ig-RTN transient, the profiling of traps as a function of time can be achieved. Results demonstrated that the filament of RRAM can be experimentally profiled as a cone-shape path with the neck near TE and the waist close to BE. Three kinds of operations, SET/RESET/dFuse of RRAM, can be understood through the traps and the filament formation. For SET, the path near BE becomes narrower and convergent to a stable state; for RESET, the neck of the filament is broken, where the accumulated traps are filled with oxygen-ions diffusing back from TE; for dFuse, the waist of the filament has been damaged and ruptured so as not to conduct any current, i.e., an open of the path. This concept can be used to explore more application for RRAM as a potential candidate for embedded applications in the IoT era.

Acknowledgments—This work was supported by the Ministry of Science and Technology, Taiwan, and MOST 105-2221-E-009-100-MY3, and Research of Excellence program MOST 106-2633-E-009-001.

References:
Fig. 2 Preparation of Bilayer RRAM: A bilayer RRAM structure with HfON/Al2O3. (a) The process flow, (b) The TEM cross-section, and (c) The composition of RRAM cell from TE(top-electrode) to BE(bottom-electrode).

Fig. 2 RRAM exhibits regular set/reset back and forth sweep in Lo/Hi R states. More interestingly, if biased at higher electric field, the current is dropped rapidly and becomes unrecovable.

Fig. 4 To identify the mechanisms in the dielectric layer, \(I_T-\text{RTN} \) is used to locate traps during the breakdown process. \(I_T \) is low as electrons are trapped, \(\tau_e \). Otherwise, it will be high when traps are empty, \(\tau_e \).

Fig. 4 (a) The forming path profiled by RTN traps. Two trap groups are found. One(=the red path) conducts from Pt to TiN induced by electrons since this group almost interacts to TiN, with the negative slope of \(\text{VTE} \), and the filament is formed and grows. Two trap groups are found. One(=the red path) conducts from Pt to TiN induced by electrons since this group almost interacts to TiN, with the negative slope of \(\text{VTE} \), and the filament is formed and grows.

Fig. 5 Methodology of profiling RTN traps in a filament-path: A method to find the filament path by the tracing of RTN traps. Fast voltage stress is applied and hold. Then, RTN measurement is performed. The process is repeated until the RRAM is switched.

Fig. 6 (a) The forming path profiled by RTN traps. Two trap groups are found. One(=the red path) conducts from Pt to TiN induced by electrons since this group almost interacts to TiN, with the negative slope of \(\text{VTE} \), and the filament is formed and grows. Two trap groups are found. One(=the red path) conducts from Pt to TiN induced by electrons since this group almost interacts to TiN, with the negative slope of \(\text{VTE} \), and the filament is formed and grows.

Fig. 6 (b) The RTN accumulation path and the filament waist and neck induced by electrons and vacancies. The filament formation is localized around the waist(Al2O3 and the interface), such that this local region was ruptured and became porous, resulting in a lower conducting path.

Table 1 Summary of operations in Bilayer RRAM: From RTN traps, filaments can be observed for 3 different conditions, Set, Reset, and dFuse.

Table 1 Summary of operations in Bilayer RRAM: From RTN traps, filaments can be observed for 3 different conditions, Set, Reset, and dFuse.