Continuous Multilevel Compact Model of Subthreshold Conduction and Threshold Switching in Phase-Change Memory

Corentin Pigot^{1,2,3}, Fabien Gilibert¹, Marina Reyboz², Marc Bocquet³, Paola Zuliani⁴ and Jean-Michel Portal³

¹ STMicroelectronics, Crolles 850 rue Jean Monnet, 38926 Crolles, France Phone: +33-476-923-607 E-mail: corentin.pigot@st.com ² CEA Leti, MINATEC Campus, F-38054 Grenoble, France ³ IM2NP, Aix-Marseille Université, 5 rue Enrico Fermi, Bat Fermi, 13453 Marseille ⁴STMicroelectronics, Via C.Olivetti 2, 20041 Agrate Brianza, Italy

Abstract

A Phase-Change Memory (PCM) physical-based compact modeling of the subthreshold conduction together with the threshold switching is proposed and the results are compared to experimental data collected on a PCM cell embedded in a 90nm technology. Model accuracy is proven through a good correlation between simulations and measurements for all intermediate states with a single set of parameters. Moreover, the constant threshold power measured brings evidence in favor of a thermally activated threshold in nanoscale PCM device.

1. Introduction

Phase-Change Memory (PCM) has known a growing interest in the previous decade thanks to its unique features of fast switching, low voltages, and high scalability. In order to push this emerging non-volatile solution to an industrial level, designers need a robust compact model to assess for instance the efficiency of full memory array. A difficult part of the PCM modeling is the switching of the amorphous phase to low resistance regime, due to its intrinsic non-linearity. Although it has been considered for a long time as a pure electronic mechanism [1], recent studies have shown a thermal activation in nanoscales memories [2]. Previous works of physical-based compact modeling [3, 4] use a fermi-like smoothing function to simulate the threshold switching whereas it has been modeled in this work for the first time through the sole self-heating of the cell. This basic approach has been validated through I-V measurements for a large set of intermediate states. The simplicity of the approach is highly interesting in terms of simulation time and convergence ease required in compact model.

2. Experimental Setup and Modeling Method

Test Structure

Measurements have been performed on a test structure manufactured on a 90nm CMOS node with embedded PCM option. This test structure is composed of a PCM stack serially connected to a MOS transistor. A simplified 2-D schematic of the memory cell is shown on Fig. 1. The 50nm thick phase-change material has been inserted between Top Electrode (TE) and a heater with a wall structure shape [5].

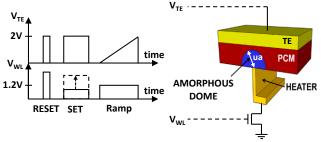


Fig. 1 Schematic of the test structure: wall-type PCM serially connected to a MOS transistor.

Measurement set-up

A reset pulse of 2V is applied during 200ns before any programming pulse. Intermediate states are then achieved applying a 800ns pulse of 2V on the Top Electrode (TE) and modulating the Word Line (WL) bias between 1V and 2V. A resistance continuum between 200k Ω and 2M Ω can be achieved this way. Threshold switching is then measured with a 1V/ms ramp (0 to 2V) applied on TE and a WL voltage of 1.2V to control the compliance.

Compact Model

The subthreshold transport has been modeled by a Poole-Frenkel (P-F) current I_{PF} [6,7] given by,

$$I_{PF} = A * F * \exp\left(-\frac{\Phi - \beta\sqrt{F}}{kT}\right) \quad with \ F = \frac{V}{u_a}$$
 (1)

where k is the Boltzmann constant, T the temperature and F the electric field across the amorphous phase. Negligible voltage drop inside the crystalline GST assumption allowed to access the amorphous thickness u_a , straightly linked to the state of the memory. V is the PCM's voltage, β a constant of the material linked to its permittivity, and A is a fitting parameter. Φ is the activation energy and follows the Varshni's empirical law [8] according to equation (2),

$$\Phi = E_{a_0} - \frac{aT^2}{b+T} \tag{2}$$

with $a = 1.2 \text{meV.T}^{-1}$, b = 800 K and E_{a0} a fitting parameter.

The threshold switching is modeled as a thermal runaway in the P-F current triggered by the self-heating of the cell. Any elevation of the temperature in the material being due to the Joule Effect, the temperature is calculated, under the assumption of a short time constant [4], as,

$$T = T_{amb} + R_{th} * P_I \tag{3}$$

with T_{amb} the ambient temperature, R_{th} an effective thermal resistance, taking the geometry of the cell into account. P_f is the electrical power dissipated inside the PCM. As P_f depends on the current flowing through the cell, the calculation of the temperature implies a positive feedback responsible of the switching inside the amorphous phase.

Considering that the crystalline semiconducting resistance is negligible as long as the amorphous phase exists in the material, the same P-F current is applied to all the intermediate states as well. u_a parameter carries the state as it varies from 0nm to the maximum thickness $u_{a,max}$ extracted from the full RESET state.

3. Results and Discussion

The comparison of the I-V characteristics between model and measurements for a full range of resistance values is presented on Fig.2. The measured resistance is extracted at a constant voltage of 0.36V. The compliance current is fitted thanks to the serially connected MOS transistor.

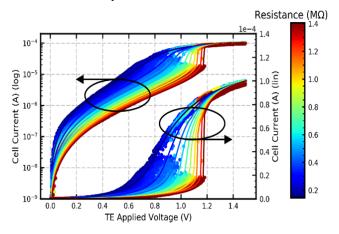


Fig. 2 Cell current versus TE applied voltage for several intermediate states with model (line) and measurements (symbol).

The model card parameters are presented in Table I. R_{th} is in good agreement with the commonly accepted value for a high thermal efficiency nanoscale PCM cell [4]. A value of relative dielectric constant $\varepsilon_r = 10$ [2] implies, accordingly to Poole-Frenkel's theory, $\beta = 24 \mu \text{eV.V}^{-0.5} \cdot \text{m}^{0.5}$. The subthreshold slope of the RESET state then gives a coherent value of $u_{a,max} = 48 \text{nm}$, compliant with a total GST thickness of about 50 nm. The least resistive state achieved here corresponds to 10% of the maximum thickness, i.e. $u_a = 5 \text{nm}$.

For amorphous caps thicker than approximately $u_a = 25$ nm (resistance above 0.5M Ω), the I-V curve presents a drop in resistance, called the threshold switching, well cap-

tured by the model. It is defined as the value of voltage and current where the current in one voltage step of 10mV exceeds a given value of $1\mu\text{A}$. Both voltage and power are shown on Fig. 3, presenting a good agreement between data and simulations.

Table I Fitting parameters

Parameter	Value
Rth	2.0K.μW ⁻¹
A	$1.45.10^{-4}\Omega^{-1}$
Ea0	0.3eV

Despite a dispersive extraction, the threshold power can be considered as constant, meaning that switching happens at a constant temperature of about 338K, according to eq. (3). This is a strong argument in favor of a thermally activated threshold, in line with the work of Le Gallo *et al.* [2].

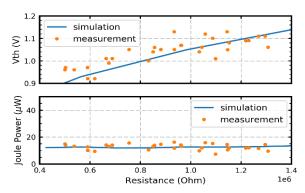


Fig. 3 Threshold voltage (up) and power (down) versus the resistance of the cell.

4. Conclusions

This work presents a physical-based compact modeling of the subthreshold conduction and the threshold switching of a Phase-Change Memory using only Poole-Frenkel's conduction associated with self-heating. This model is consistent with the thermally-assisted switching enlighten by I-V measurements of a wide range of intermediate states. This fast-converging amorphous conduction and switching modeling will be integrated in a complete continuous compact model for phase-change memory.

References

- [1] D. Ielmini et al., J. Appl. Phys. 102 (2007) 054517.
- [2] M. Le Gallo et al., J. Appl. Phys. 119 (2016) 025704.
- [3] D. Ventrice et al., Electron Device Lett. 28 (2007) 973.
- [4] K. Sonoda et al., Trans. Electron Devices 55 (2008) 1672.
- [5] R. Anunziata et al., 2009 IEEE International Electron Devices Meeting (2009) 97.
- [6] Y. Shih et al., 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (2010) 1092.
- [7] R. Hill, Philosophical Magazine 23 (1971) 59.
- [8] Y. Varshni, Physica 34 (1967) 149.