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Abstract 

In this paper, we verified the validity of our proposed 

model of evaluating an accurate thermal stability factor 

0 using its temperature dependency for magnetic tunnel 

junction with perpendicular anisotropy (p-MTJ). In or-

der to verify its validity, we compared the value of 0 

extrapolated by this model with accurate one with negli-

gibly small current disturbance. By confirming that the 

both values corresponded, we revealed that the accurate 

0 can be evaluated with our proposed model. Moreover, 

we verified that its thermal dependency was proportion-

al to the square of the saturation magnetization.  

1. Introduction 
Spin-transfer-torque magnetoresistance random access 

memory (STT-MRAM) using p-MTJs is one of the promis-
ing candidates for the future non-volatile embedded memory 
and its logic applications [1]. In order to guarantee data re-
tention of STT-MRAM, a method of evaluating accurate 0 

is indispensable. However, accurate evaluation method of 0 
for one target MTJ has not been established yet. For exam-
ple, 0 is evaluated by iteratively applying current pulse [2]. 
However, it was shown that 0 was underestimated by large 
current due to distortion of potential caused by current dis-
turbance with short measurement time [3], [4]. This is a 
major disadvantage in industrial commercialization of 
STT-MRAM. Therefore we proposed a method of evaluat-
ing the accurate 0 for one target MTJ using thermal dis-
turbance in a short time [3]. However, there was an issue in 
our proposed method, such as the validity of an evaluation 
model represented by a following formula (1) which extrap-
olates 0 at room temperature. 

Eb(0) (1 – T 
3/2 

)
2
 / kBT  Ms

2
(T )    (1) 

where Eb(0) is the energy barrier between the two stable 
magnetization configuration at 0 K, kB is Boltzman constant, 
T is absolute temperature,  is the material-dependent con-
stant and Ms(T ) is the saturation magnetization. 

2. Concept of the validation of our proposed model 

The concept of validation of our model is shown in 

Fig. 1. We evaluate an accurate 0 with negligibly small 

current disturbance due to large pulse duration as shown in 

Fig. 1(a). After that, we compare this accurate 0 with the 

values extrapolated by our proposed method as shown in Fig. 

1(b). Then if the both values correspond, we can validate the 

evaluation model in our proposed method.Table. I shows 

benchmarking table of these evaluation methods.  

3. Results and discussion 
Fig. 2 shows the measurement setup to evaluate 0. A 

measured film was deposited onto Si substrate using DC and 
RF magnetron sputtering system at room temperature. In 
this study, we employed double CoFeB/MgO interfaces MTJ. 
The measured MTJ was consist of, from substrate side, bot-
tom electrode/[Co/Pt] based reference layer/MgO/free layer/ 
MgO/ top electrode. The basic concept of the [Co/Pt] refer-
ence layer has been described elsewhere [5], [6]. Table. II 

shows the properties of a measured MTJ 
First, we evaluated the accurate 0 with negligibly 

small current disturbance. Fig. 3 shows the switching proba-
bility as a function of applied current at 24, 50, 80°C. At 
each temperature, we evaluated one while changing the 
pulse duration to 5 ms, 50 s, 5 s. As shown in Fig. 3, the 
applied current decreases as the pulse duration increases. By 
using these values, we calculated -ln(-𝜏0/t ln(1-P)) vs. cur-
rent as shown in Fig. 4 where 0 is the attempt time (~10

-9
 s), 

t is the pulse duration, P is the switching probability. In case 
of 24°C (50°C), the slope recovers due to negligibly small 
current disturbance using 5 ms (5 ms, 50 s) current pulse. 
Therefore the accurate 0 is evaluated under this condition 
as shown in Fig. 2(a). On the other hand, the slope is almost 
constant at 80°C. From this results, we plotted the s or 
s, T ) /ms, T )vs. average applied current Iave = 
(|IP-AP|P = 0.5| + |IAP-P|P = 0.5|) / 2 as shown in Fig. 5 where 
IP-AP(AP-P)|P = 0.5 denotes the current at switching probability = 
0.5 from parallel (antiparallel) to antiparallel (parallel) 
magnetization configuration. The value of vertical axis is 
almost 1 when Iave < 29 A since the current disturbance is 
negligibly small. This indicates that the accurate 0 can be 
evaluated under this current condition. 

Second, we evaluated the 0 by our proposed method at 
170-210°C (interval of 10°C) as shown in Fig. 6. From these 
values and Eq. (1), we extrapolated 0 at each temperature 
as shown in Fig. 6. As shown in Fig.6, the value extrapolat-
ed by this model almost corresponded with the accurate 0 
revealed in Fig. 5. From the above, we revealed that the ac-
curate 0 could be evaluated with our proposed model and 
its thermal dependency was proportional to Ms

2
(T ) unlike 

linear characteristic shown in some papers [7]. 

4. Conclusions 

We verified the validity of our proposed model of 

evaluating accurate 0 for one target MTJ using its thermal 

dependency. In order to verify the validity of it, we com-

pared the value of 0 extrapolated by this model with accu-

rate one. We showed that the accurate 0 with negligibly 

small current disturbance can be evaluated when the average 

applied current Iave < 29 A for the measured MTJ. By con-

firming that these values corresponded with the values ex-

trapolated by our model, we revealed that the accurate 0 

could be evaluated with our proposed model and its thermal 

dependency was proportional to Ms
2
(T ) unlike the linear 

characteristic shown in some papers. 
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Fig. 1. Concept of the validation of our proposed model. 
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Table. II. The property of measured MTJ. 

 

p-MTJ (25 nm)

TMR ratio (%) 80.9

RA (Ω ) 10.4

 
Fig. 5. (5 s or 50 s, T ) / (5ms, T ) vs. Iave. 

0

0.5

1

20 25 30 35

Average applied current ( )

1

0.5

(Accurate)

20
0

25 30 35

due to negligibly small current 
disturbance @

 
Fig. 6. 0 vs. temperature for double interface p-MTJ. 
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Fig. 2. Measurement setup. 
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Fig. 3. Switching probability as a function of applied current. 
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Fig. 4. –ln{–𝜏0/t ln(1-P )} as a function of applied current. 
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Table. I. Benchmark of evaluation methods. 
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