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Abstract 

We present recent progress on vertically stacked-wires 

MOSFETs with a replacement metal gate process for 

CMOS scaling beyond FinFET technology. Key techno-

logical challenges (such as 3D integration process includ-

ing inner spacer, mobility, and strain engineering) will be 

discussed in relation to recent research results. 
 

1. Introduction 

Gate-All-Around (GAA) field-effect-transistors have long 

been recognized as offering the best solution to short-chan-

nel-effects (SCE) with a high current drivability per layout 

footprint due to 3D vertically stacked channels [1-4]. Moreo-

ver, horizontal GAA NanoWires (NWs) also have the ad-

vantage of being fabricated with minimal deviation from Fin-

FET devices in contrast to vertical NWs which require more 

disruptive technological changes. For these reasons, the GAA 

stacked-wires MOSFET architecture is today regarded as an 

attractive option to push CMOS scaling beyond 7/5nm nodes. 

Although the first 3D GAA transistors were demonstrated ten 

years ago [1-4], significant progress have been reported last 

year [5-6] with aggressive 44/48 CPP (Contacted Poly Pitch) 

ground rules [7]. In this paper we will discuss recent progress 

and the major roadblocks remaining to reach higher perfor-

mances in such devices, in particular stress boosters and par-

asitic capacitances. 

2. Design options of GAA stacked-wires devices 
Two main options can be considered for GAA transistors 

(Fig. 1). As compared to FinFET, the conventional square (or 

round) NW has a lower effective width (Weff) in a given lay-

out footprint even if the Drain-Induced Barrier Lowering 

(DIBL) shown in Fig. 2 is strongly reduced. However, wide 

and thin Nanosheets (NS) can significantly increase Weff 

compared to conventional FinFETs (or stacked-NW) and 

therefore offer better current drivability. As shown in Fig. 3, 

stacked nanosheets show the best compromise to maximize 

Weff while having similar and even lower DIBL. The capabil-

ity to have a fine-tuning of the sheet width enables VT flavors 

relevant for power-performance optimization [7,8,9]. 

3. Carrier mobility 
The computed carrier mobilities in [110]-oriented GAA NS, 

NW and FinFET devices are shown in Figs. 4-7. The size-

dependent carrier mobility in 3D multi-gate devices is mainly 

due to facet-dominated transport with high (resp. low) elec-

tron mobility in the (100) (resp. (110)) plane and high (resp. 

low) hole mobility in the (110) (resp. (100)) plane. Mean-

while, mobility in conventional NWs is often the worse due 

to additional quantum confinement effects resulting in mobil-

ity reduction. Horizontal GAA NS for n-FET and vertical 

GAA NS for p-FET turn out to be the best possible configu-

ration to promote electron and hole transport. 

4. Device integration and performance 

Over the last year, vertically stacked-NW/NS MOSFETs 

were fabricated using a replacement metal gate process with 

specific technical requirements compared to FinFET [5-7]. 

The fabrication started with the epitaxial growth of 

(Si0.7Ge0.3/Si) multilayers. Fig. 8a shows a TEM image of 

(SiGe/Si) multilayers with three Si channels and two sacrifi-

cial SiGe layers. Then, individual and dense arrays of fins 

were patterned to fabricate stacked-wires FETs. Multiple pat-

terning techniques were used in order to meet the density tar-

gets of advanced nodes. Fig. 8b shows TEM images in the 

transverse and longitudinal directions after the etching of 

(SiGe/Si)-fins. Our SIT-based patterning technique yielded 

40 nm-pitch fins which were 60 nm high and roughly 20 nm 

wide. After that, dummy gates and spacers were defined prior 

to the anisotropic etching of the (SiGe/Si) multilayers. Then, 

the SiGe layers were partially etched selectively to the Si ones 

to form inner spacers well-aligned and correctly dimensioned 

as shown in Fig. 8c. The Si wires were released during the 

Replacement Metal Gate (RMG) module prior to conformal 

HfO2/TiN/W gate deposition (Fig. 8d). If the fabrication of 

stacked-wires FETs including inner spacer is crucial to reduce 

parasitic capacitances, another major challenges is the strain 

engineering used to improve short-channel performances. 

Strain fields were imaged at different stages of our fabrication 

process. For example, SiGe(B) raised-Source/Drain were 

used to inject a significant amounts of compressive strain in 

Si channels (Fig. 9b). The level of in-plane deformation in Si 

p-channels became close to 1%. Meanwhile, no strain was 

generated with Si raised-S/Ds (Fig. 9a). A typical transfer 

and output characteristics of stacked-NWs p-FET with 

LG=25 nm and W~30 nm is shown in Fig. 10.  

5. Conclusion 

Recent results in stacked Nanosheet transistors demonstrate 

the high competitiveness of this technology for future tech-

nology nodes. Thanks to the benefits of large Weff, the 

Nanosheet architecture is a versatile design option for perfor-

mance and power management. 
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Fig. 1 : (Left) Two GAA transistor options in order to replace 

FinFET: NanoWire (WNW=WFin) and NanoSheets (WNS>WFin). 

(Right) In contrast to NW, a significant increase in effective 

width (Weff) can be achieved with GAA NS transistors at constant 

footprint. Weff is defined as the circumference of FF, NW, or NS. 

Fig. 2 : DIBL vs Width (W) 

at LG=13nm. Immunity to 

SCE of GAA NS is 

between the NW and 

FinFET (FF) boundaries. 

Fig. 3 : DIBL vs Weff at 

LG=13nm. Improvement 

in Weff at constant DIBL 

for GAA NS compared to 

FinFET (FF) devices. 
 

    

Fig. 4 : Electron mobility vs 

W for [110] GAA NW/NS 

FETs (H=7nm). 

Fig. 5 : Electron mobility vs 

HFin for [110] FinFET tran-

sistors (W=7nm). TG stands 

for Triple Gate (W=H). 

Fig. 6 : Hole mobility vs W 

or H for [110] horizontal 

(HGAA, H=7nm) and verti-

cal (VGAA, W=7nm) FETs. 

Fig. 7 : Hole mobility vs HFin 

for [110] FinFET (FF) tran-

sistors (W=7nm). TG stands 

for Triple Gate (W=H). 
 

 

Fig. 8: Cross-sectional Transmission Electron Microscopy (TEM) images at various stages of the stacked-NW/NS fabrica-

tion process. (a) Formation of (Si/SiGe) superlattices with 3 levels of Si layers stacked upon one another. (b) Etching of 

(Si/SiGe) fins shown in the longitudinal and transverse directions of future Si (or SiGe) wires. Two fins patterning were 

used: (left) single-fin process and (right) dense array of fins with a Sidewall Image Transfer (SIT) process. (c) Stacked-

wires FET after the integration of inner spacer. (d) Stacked-wires FET with a HfO2/TiN/W gate stack. 
 

  

Fig. 9: HAADF STEM images of stacked-NWs p-FETs and Precession Electron 

Diffraction deformation maps in the (xx) and (yy) directions. Strain is measured 

after Si (a) and Si0.7Ge0.3:B (b) S/D epitaxy. No strain into Si p-channels for Si 

S/Ds. However, recessed and epitaxially regrown Si0.7Ge0.3:B S/Ds inject a com-

pressive strain close to 1% (in blue) in the top and bottom Si p-channels. 

Fig. 10: (Left) IDS-VGS and (right) IDS-

VDS characteristics of stacked-NS p-

FETs with LG=25nm. Here, the width 

W~30nm. 
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