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Abstract 

Deep-ultraviolet light-emitting diodes (DUV-LEDs) 

with emission wavelength between 222 - 351 nm were 

demonstrated which were achieved by developing Al-

GaN/AlN crystal growth techniques. We succeeded in sig-

nificant increase of internal quantum efficiency (IQE) and 

light-extraction efficiency (LEE) and achieved an external 

quantum efficiency (EQE) more than 20% for DUV-LED. 

We are also developing unexplored frequency (5 – 12 THz) 

terahertz quantum-cascade lasers (THz-QCLs) using 

GaN-based semiconductors. We achieved first observation 

of inter-subband stimulated emission from GaN/AlGaN 

QC-structures by current injection. 

 

1. Introduction 

The development of new-frequency semiconductor light 

sources, such as deep-ultraviolet (DUV) light-emitting di-

odes (LEDs), laser diodes (LDs) and terahertz quan-

tum-cascade lasers (THz-QCLs) are attracting much atten-

tions because of their wide variety of potential applications. 

AlGaN DUV-LEDs are attracting a great deal of attention, 

since they have the potential to be used in a wide variety of 

applications, such as for sterilization, water purification, UV 

curing, and in the medical and biochemistry fields, and so 

on, as shown in Fig. 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Potential applications of deep-UV (DUV) LEDs and LDs 

 

As a result of recent developments in AlGaN DUV LEDs, 

high internal quantum efficiencies (IQE) of more than 

60-70 % have been achieved by reducing the threading dis-

location density (TDD) of the AlN, by improving the crystal 

growth technique and/or by the introduction of AlN single 

crystal wafers. Also we achieved significant increase of 

electron injection efficiency (EIE) by introducing mul-

ti-quantum barrier (MQB) electron blocking layer (EBL). 

We have demonstrated AlGaN DUV-LEDs with wavelength 

range between 222 - 351 nm including the shortest wave-

length (222 nm) of the AlGaN quantum well (QW) LEDs. 

We have also developed top level high output power more 

than 80 mW and external quantum efficiency of 10 %.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Schematic structure, cross sectional TEM image and emis-

sion spectra of AlGaN and quaternary InAlGaN-based DUV-LEDs 

 

However, the wall-plug efficiency (WPE) of AlGaN 

DUV-LEDs still remains at 2 - 3 %. The first target for the 

efficiency of AlGaN DUV-LEDs is to go beyond an effi-

ciency of 20%, which would make them comparable to 

germicidal mercury lamps. A significant problem is that the 

light-extraction efficiency (LEE) of AlGaN DUV-LEDs is 

still quite low because of heavy UV absorption through the 

p-GaN contact-layer. Clearly, improving the LEE is recent 

major topic in the development of AlGaN DUV-LEDs.  

In this work, we demonstrated an EQE of over 20% in an 

AlGaN DUV-LED by the significant increase of LEE by 

introducing a transparent p-AlGaN contact layer and a 

highly reflective p-type electrode and an epitaxial lateral 

over growth (ELO) AlN buffer layer on a patterned sapphire 

substrate (PSS). Recently, we also demonstrated WPE of 

9.6 % for an AlGaN DUV LED by integrating a sapphire 

Skin Cure (Narrow band UVB)
Plant Disease Preventation

DUV光

240             260                 280                 300                320                 340                 360   

UVC                       UVB                         UVA

Wavelength （nm）

P
o
w

e
r

UV Curing
Regines, UV Adhesives, 3D Printers

Printing, Painting
Ink Jet Printers, UV Coatings

Optical Storage
DUV-DVD

Sterilization
Water Purification
Surface Disinfection

Medical, Agriculture

50nm

Al0.77Ga0.23N;Mg
(25nm)

Multi-Layer (ML)

AlN Buffer

n-Al0.77Ga0.23N;Si

Ni/Au Electrode
GaN;Mg(60nm)
Contact Layer

Sapphire Sub.

Ni/Au

UV Output

Al0.62Ga0.38N(1.5nm)/
Al0.77Ga0.23N(6nm)
3-layer MQW
Emitting Layer

Al0.95Ga0.5N;Mg/
Al0.77Ga0.23N;Mg
6-layer Multi-quantum 
Barrier (MQB)

200 250 300 350 400 450
Wavelength  (nm)

N
o

rm
al

iz
ed

 In
te

n
si

ty
 

AlGaN-QW
DUV LEDs

Measured 
at RT

222nm  Pulsed
227nm  Pulsed
234nm   CW
240nm   CW
248nm   CW
255nm   CW
261nm   CW

InAlGaN-QW
DUV LED
282nm   CW
342nm   CW
351nm   CW

 G-2-01 (Invited)
Extended Abstracts of the 2017 International Conference on Solid State Devices and Materials, Sendai, 2017, pp307-308

- 307 -



lens on the backside of sapphire substrate of a flip-chip LED. 

Also we demonstrated a dramatic LEE enhancement of an 

AlGaN DUV LED by using highly reflective photonic crys-

tal (PhC) contact layer showing a perfect-reflection property. 

Using these effects, we aim to develop DUV LED with 

WPE of more than 20 %, in near future. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Schematic LED structures for improving light-extraction 

efficiency (LEE) of DUV LED and roughly calculated LEE values 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Current- output power (I-L) and I-EQE characteristics DUV 

LED demonstrating world top EQE of 20.3%, achieved by im-

proving LEE 

 

  Also attracting a great deal of attention are THz-QCLs, 

which
 
are compact, high-power, narrow line-width THz la-

ser light sources that have the potential to be useful in a va-

riety of applications such as in medical imaging, security 

screening, wireless communications, etc. We are studying 

THz-QCLs using III-nitride semiconductors, with which 

there is the potential to realize QCLs with wide frequency 

ranges. The electron-longitudinal optical (e-LO) phonon 

energy (Ee-LO) of GaN-based semiconductors is large, being 

about 90 meV, which is almost three times that of GaAs 

semiconductors (36 meV). Also the maximum conduc-

tion-band discontinuity (ΔEc) is 1.86 eV for GaN/AlN, 

which is more than three times that of an InGaAs/AlGaAs 

(0.6 eV) lattice matched to an InP substrate. Such unique 

material properties are attractive for developing QCLs oper-

ating at previously unexplored frequencies. The current sta-

tus of the operating frequency range achieved by 

GaAs-based THz-QCLs is limited to 1.2～5.2 THz. On the 

other hand, by shifting the e-LO phonon absorption fre-

quency, the operating frequencies of GaN-based THz-QCLs 

are expected to be in the range 3～20 THz, including the 

unexplored frequencies from 5 to 12 THz. Moreover, by 

using the large band discontinuity of GaN/Al(Ga)N super-

lattices (SLs), it is expected that 1～8μm band infrared 

(IR)-QCLs will be realized. We fabricated GaN/AlGaN 

THz-QCLs comprising a pure-3-level system design and 

conducted the first demonstration of stimulated emission 

with a III-nitride-based QCL. We achieved stimulated emis-

sion with a GaN-based QCL in the unexplored frequency 

range from 5.4 to 7 THz.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Quantum structure design, cross-sectional TEM image of 

fabricated GaN/AlGaN THz-QCL and emission spectrum, I-V 

and I-L characteristics of the stimulated emission observed from  

the GaN-based QCL 
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