Highly Stable Heavily-Doped Oxide Contacts on Oxide Nanowires: Reliable Low Contact Resistance and Enhancement of Long-term Sensor Response

Hao Zeng, Tsunaki Takahashi ${ }^{\dagger}$, Kazuki Nagashima, and Takeshi Yanagida ${ }^{\ddagger}$
Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan Phone: +81-92-583-7621, E-mail: ‘takahashi.t@cm.kyushu-u.ac.jp, *yanagida@cm.kyushu-u.ac.jp

Abstract

A superior high temperature stability of SnO_{2} nanowire devices was demonstrated by using heavily $\mathbf{S b}$-doped SnO_{2} (ATO) as a contact layer. From contact resistance $\left(R_{c}\right)$ evaluations with $200^{\circ} \mathrm{C}$ air annealing, it is clarified that R_{c} of conventional Ti contacts significantly degrades due to Ti oxidation. Contrary, the R_{c} of ATO contact was almost constant over 400 hours. Furthermore, the practical stability of ATO contact was also confirmed by longterm gas sensor response measurements. Since the proposed concept can be applied for other oxide nanodevices, it enhances wider applications of oxide-based electronics.

\section*{Introduction}

Recently, metal oxide nanowires have been intensively studied because of its various applications such as chemi$\mathrm{cal} / \mathrm{bio}$ sensors, resistive switching memory, transparent electronics, etc. [1,2]. In terms of the practical application of oxide nanowires, contact resistance $\left(R_{\mathrm{c}}\right)$ is one of the critical issues because widely-used contact materials of low-workfunction metal (Ti, Cr) are easily oxidized at operation temperature of typical chemical sensors around $200^{\circ} \mathrm{C}$ [3]. Thus, stable contact materials to oxide nanowires are strongly desired for the oxide-based electron devices exposed to air and high temperatures.

In this work, we propose heavily Sb -doped SnO_{2} (ATO) as a contact material on SnO_{2} nanowires. The long-term stability of R_{c} of ATO and Ti were evaluated at a high temperature. A stability of SnO_{2} gas sensors is also investigated for ATO and Ti contacts.

Experiments

Single crystalline Sb -doped SnO_{2} nanowires were grown on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (110) substrate by pulsed laser deposition technique using SnO_{2} mixed with $0.5 \mathrm{at} \%-\mathrm{Sb}_{2} \mathrm{O}_{3}$ target [4]. The grown nanowires were dropped on $\mathrm{SiO}_{2} / \mathrm{Si}$ substrate and electrodes were formed by electron-beam lithography and lift-off. As contact materials, Ti and heavily Sb -doped SnO_{2} (ATO, $\mathrm{Sb}_{2} \mathrm{O}_{3} 10 \mathrm{at} \%$ target) were deposited by sputtering and PLD, respectively (Fig. 1). For ATO contact devices, Ar annealing was performed at $750^{\circ} \mathrm{C}$ for 10 min to activate the dopant ions (Sb) in ATO. A schematic and SEM image of typical devices are shown in Fig. 2. For electrical characterizations, contact resistances $\left(R_{\mathrm{c}}\right)$ were extracted by 4-probe technique. A longterm stability was evaluated by annealing devices at $200^{\circ} \mathrm{C}$ in air during intervals between electrical measurements.

Contact Resistances $\left(\boldsymbol{R}_{\mathrm{c}}\right)$ of Ti and ATO

2-probe $I-V$ characteristics of Ti and ATO contact devices were measured as fabricated, after 6- and 330 - hours $200^{\circ} \mathrm{C}$ annealing (Fig. 3). Although the current of Ti contact devices greatly decreases after annealing, that of ATO contact devices only slightly changes, indicating ATO contact devices are more stable at a high temperature operation. It is noted that
the $I-V$ curves of Ti contact devices show Schottky-diode like characteristics after annealing.

In order to clarify the origin of the current degradations in Ti contact devices, R_{c} was extracted from 4-probe measurements through 500 hours with $200^{\circ} \mathrm{C}$ annealing (Fig. 4). The rapid increase in R_{c} of Ti contact was clearly observed during less than 200-hours annealing time. On the other hand, R_{c} of ATO contact devices was almost constant over 400 hours. Furthermore, it was confirmed that the slight current decrease of the ATO contact devices was results from the increase in nanowire resistivity by annealing (data not shown), namely the compensation of oxygen vacancies in SnO_{2} nanowires which act as mobile carriers [5]. Thus, the advantage of ATO contacts compared to conventional Ti contacts was clearly shown in terms of stability of R_{c}.

The rapid increase in R_{c} of Ti contact is originated in the oxidation of Ti to $\mathrm{TiO}_{\mathrm{x}}$. As fabricated, Ti and n -type SnO_{2} form a good Ohmic contact due to their band alignment (Fig. $5 \mathrm{a})$. However, after Ti is oxidized, the contact stack changes to $\mathrm{Pt} / \mathrm{TiO}_{\mathrm{x}} / \mathrm{SnO}_{2}$ and a high and thick Schottky barrier is formed due to the low carrier density of $\mathrm{TiO}_{\mathrm{x}}$, resulting in rapid increase in R_{c} (Fig. 5b). For ATO contacts, because of a thin Schottky barrier in n+ ATO layer, electrons can easily tunnel through the barrier and a good Ohmic characteristics are obtained.

Long-term Sensor Response

A practical advantage of our concept was demonstrated by measuring gas sensor responses with high temperature annealing. Fig. 6 shows the relationship between the relative response to $100 \mathrm{ppm} \mathrm{NO}=2$ and annealing time for Ti and ATO contact devices. The response of Ti contact sensors significantly degrades to around 1% within 100 hours due to Ti oxidation. Contrary, the response of ATO contact devices show only small decrease due to oxygen adsorption on SnO_{2} nanowire surface. Thus, heavily-doped oxide contact devices shows superior long-term performances compared to the conventional metal contacts.

Conclusions

A stable Ohmic contact on SnO_{2} nanowires was verified by using heavily Sb -doped SnO_{2} (ATO) as a contact layer. Although the contact resistance of conventional Ti contact devices rapidly decreases at high temperatures due to Ti oxidation, that of ATO was almost constant over 400 hours. From the evaluation of NO_{2} responses of Ti and ATO contact sensors, superior long-term response characteristics of ATO contact sensors were confirmed. Since proposed our concept can be applied for other oxide materials such as $\mathrm{ZnO}, \mathrm{MgO}$, etc., it enhances wider applications of oxide electronics.

Acknowledgments: This work was supported by CREST of Japan Science and Technology Corporation (JST). Y. T. was supported by ImPACT. H. Z., T. T., and K. N were supported by KAKENHI Grant Numbers (No.17H04927, No.26706005, No.16H00969, No.15K13288, No.15H03528, No.26220908). This work was performed under the Cooperative Research Program of "Network Joint Research Center for Materials and Devices" and the MEXT Project of "Integrated Research Consortium on Chemical Sciences".

References

[1] K. Nagashima et al., Nano Lett., 11, p2114, 2011.
[2] E. N. Dattoli et al., Nano Lett., 7, p2463, 2007.
[3] G. Meng et al., ACS Sensors, 1, p997, 2016.
[4] A. Klamchuen et al., Appl. Phys. Lett., 95, p053105, 2009.
[5] A. K. Singh et al., Phys. Rev. Lett., 101, p055502, 2008.

Fig. 1: Key fabrication processes of SnO_{2}

Fig. 2: (a) Device schematic and (b) SEM image of a typical 4-terminal device.
 nanowire devices.

Fig. 3: $I-V$ characteristics of (a) Ti and (b) heavily Sb -doped SnO_{2} (ATO) contact SnO_{2} nanowires as fabricated (0 h), after 6 - and 330 -hours $200^{\circ} \mathrm{C}$ air annealing. Although the current of Ti contact devices greatly decrease after annealing, that of ATO contact devices only slightly changes due to the increase in resistivity of SnO_{2} nanowire channel, indicating stable operations of ATO contact devices at a high temperature.
(a) $\mathrm{Ti} / \mathrm{SnO}_{2}$

(b) $\mathrm{Pt} / \mathrm{TiO}_{\mathrm{x}} / \mathrm{SnO}_{2}$

(c) $\mathrm{Pt} / \mathrm{ATO} / \mathrm{SnO}_{2}$

Fig. 5: Energy band diagrams at cross section between electrode and SnO_{2} nanowire channel for (a) $\mathrm{Ti} / \mathrm{SnO}_{2}$, (b) $\mathrm{Pt} / \mathrm{TiO}_{x} / \mathrm{SnO}_{2}$, and (c) $\mathrm{Pt} / \mathrm{ATO} / \mathrm{SnO}_{2}$ stacks. As fabricated, Ti and n-type SnO_{2} nanowire form a good Ohmic contact due to their band alignment. However, after Ti is oxidized to $\mathrm{TiO}_{\mathrm{x}}$, a high and thick Schottky barrier enlarge R_{c}. For ATO contacts, because of a thin Schottky barrier in n+ ATO layer, a good Ohmic contact are obtained.

Fig. 4: Relationship between contact resistance $\left(R_{\mathrm{c}}\right)$ and annealing time for Ti and ATO contact devices extracted by 4-probe measurements. The rapid increase in R_{c} of Ti contact was clearly observed.

Fig. 6: Relationship between relative sensor response to $100 \mathrm{ppm} \mathrm{NO}_{2}$ and annealing time for Ti and ATO contact SnO_{2} nanowire gas sensors. Although the response of Ti contact sensor significantly degrades within 100 hours, that of ATO contact sensor show only small decrease due to oxygen adsorption on SnO_{2} nanowire surface.

