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Abstract 
This paper presents a wide load range switched-capac-

itor (SC) DC-DC buck converter with an adaptive bias 
comparator for ultra-low-power power management inte-
grated circuit (ULP-PMIC). The proposed converter is 
based on the conventional one and modified to be able to 
operate in a wide load range by using the adaptive bias 
comparator. Measurement results demonstrated that the 
proposed SC DC-DC converter generates a 1.0-V output 
voltage from a 3.0-V input voltage in the load range up to 
100 µA. The power conversion efficiency was more than 
60% in the load range from 0.8 to 100 µA.  

1. Introduction 
Ultra-low-power power management integrated circuits 

(ULP-PMICs) are strongly required for next generation 
IoT/IoE (internet of things/everything) applications because 
they have to supply appropriate voltages for circuits with a 
limited energy source. In this paper, we propose a fully inte-
grated and wide load range switched-capacitor (SC) DC-DC 
converter for ULP-PMIC.  

An SC DC-DC converter has attracted much attention as a 
core circuit of the PMIC because it can be fully integrated on 
a chip [1-4]. The converter can generate a buck or boost volt-
age by connecting capacitors in series or parallel with dedi-
cated control signals. Therefore, the control circuits must be 
designed with ultra-low power dissipation to achieve higher 
power conversion efficiency. Kojima et al. proposes a high-
efficiency SC DC-DC converter with fully on-chip configu-
ration [3]. The converter employs pulse frequency modula-
tion (PFM) control, whose operation frequency changes ac-
cording to the load current, to achieve ultra-low power dissi-
pation of the control circuit [3]. However, the load range is 
limited to less than several micro ampere (< a few µA). This 
is because the clock frequency of the PFM control circuit in-
creases when the load current increases, and thus the low-
power comparator used in the converter is not able to operate 
at higher frequency.  

To solve the problem, we develop a wide load range SC 
DC-DC converter using an adaptive bias comparator. The 
converter is based on the conventional one [3] and modified 
to be able to operate in a wide load range by using the adap-
tive bias comparator. Because the bias current of the compar-
ator increases as the load current increases, the proposed con-
verter can operate in a wider load range.  

2. Proposed circuit 
Figure 1 shows a block diagram of the proposed SC DC-

DC buck converter. The proposed circuit consists of a voltage 
and current reference circuit, start-up/fail-safe circuit, PFM 
control circuit, non-overlap clock generator, complementary 

2/5 SC DC-DC converters, and load current monitor (LCM). 
Different from the conventional converter [3], we develop the 
LCM to achieve a wide load range operation. Details of the 
circuit operation are described as follows.  

The start-up/fail-safe and PFM circuits are the control cir-
cuits for the complementary SC converters. The SC convert-
ers accept an input voltage VIN and generate an output voltage 
VOUT with the conversion ratio of two-fifth (i.e., VOUT = 2/5×
VIN). The start-up/fail-safe circuit consists of a comparator 
(COMP1) and a ring oscillator. It generates a clock signal for 
the SC DC-DC converters at the start-up and fail conditions. 
The PFM control circuit consists of a comparator (COMP2), 
toggle flip-flop (TFF), and level shifter (LS). It generates a 
clock signal for the converters at the steady-state condition. 
To reduce power dissipation of the PFM circuit, the PFM cir-
cuit is driven by VOUT, which is lower than VIN. The LS con-
verts signal level of the PFM circuit into full-swing voltage 
level of VIN. The voltage and current reference circuit gener-
ates reference voltages (VREF1 and VREF2) and bias current (IB) 
with nano-watt power dissipation.  

Figure 2 shows a schematic of the LCM and CMOP2. The 
LCM consists of an OPAMP, switches SW1, 2, capacitors CL, 

S, and current mirror circuit. The CL and two switches SW1, 2 
driven by clock pulses B form a SC resistor. The resistance 
can be expressed as (CL·f )-1, where CL is the load capacitance 

 

Fig. 1 Proposed SC DC-DC converter.
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Fig. 2 Schematic of the load current monitor (LCM). 
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and f is the switching frequency. Therefore, current IADP gen-
erated by the LCM is given by 

 .REF2LADP VCfI   (1) 
In the PFM control scheme, the switching frequency f in-
creases as the load current IL increases. Therefore, the IL is 
also given by  

 ,RippleLL VkCfI   (2) 

where k is ratio and VRipple is ripple voltage. Thus, from Eqs. 
(1) and (2), the IADP is rewritten as 

 ,LADP II   (3) 

where  is VREF2/k·VRipple. Because the bias current of the 
COMP2 is IB+IADP and IADP is proportional to IL, the proposed 
SC DC-DC converter can operate in a wide load range. 

3. Measurement results 
A prototype chip was fabricated with a 0.13-m 1P4M 

CMOS process with deep n-well option. Figure 3 shows a 
chip micro graph and its layout (area: 1.82 mm2). The refer-
ence voltages and bias current (VREF1, VREF2, and IB), were de-
signed to be 0.5, 1.0 V, and 1.2 nA, respectively. 

Figure 4 (a) shows the measured waveforms of the pro-
posed SC DC-DC converter at the startup condition. The VOUT 
increased and settled to VREF2. The settling time was 2 ms. 
Figure 4 (b) shows the measured waveform of the proposed 
SC DC-DC converter at the steady-state condition when IL 
was 455 nA. The ripple voltage VRipple was within 0.2 V. 

Figure 5 shows the power conversion efficiency of the pro-
posed and conventional circuits as a function of the load cur-
rent. The load range of the proposed circuit increased 20 
times higher than that of the conventional one. The efficiency 
was more than 60% in the load range from 0.8 to 100 µA with 
a 1-V output voltage. Note that, even in the range from 0.2 to 
1 µA, our proposed circuit achieved more than 50% power 
conversion efficiency. We confirmed that the LCM enables 
our proposed circuit to operate in a wide load range with high 
efficiency. Thus, our proposed circuit is useful for ULP-IoT 
devices. 

4. Conclusion 
In this work, we developed an SC DC-DC converter with 

an adaptive bias comparator for ULP-PMIC. The LCM ena-
bled the converter to operate in a wide load range with high 
efficiency. Measurement results demonstrated that the pro-
posed SC DC-DC converter generates a 1.0-V output voltage 
from a 3.0-V input voltage in the load current range up to 100 
µA. The power conversion efficiency was more than 60% in 
the load range of 0.8 to 100 µA. 
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Fig. 3 Chip micrograph and layout of the proposed circuit. 
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Fig. 4 Measured waveforms at (a) startup and (b) steady-state. 

 

Fig.5 Power conversion efficiency as function of load current 
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