Epitaxy and Magneto-Transport Properties in Fully Epitaxial Fe/GaO\(_x\)/Fe Magnetic Tunnel Junctions

Narayananellor Sai Krishna\(^1\), Norihiro Matsuo\(^1,2\), Naoki Doko\(^1,2\), Hidekazu Saito\(^1,*\), and Shinji Yuasa\(^1\)

\(^1\)National Institute of Advanced Industrial Science and Technology, Spintronics Research Center, Umezono 1-1-1, Central 2, Tsukuba, Ibaraki 305-8568, Japan
\(^2\)On leave from Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan

*Corresponding author, Phone: +81-29-861-5457 E-mail: h-saitoh@aist.go.jp

Abstract
We have grown fully epitaxial Fe(001)/GaO\(_x\)(001)/Fe(001) magnetic tunnel junctions (MTJs) by a solid-phase epitaxy with different growth conditions, where GaO\(_x\) is amorphous in the as-grown state. We developed a novel fabrication process that can largely reduce the formation temperature of the fully epitaxial structures from 500°C to 250°C. At room temperature (RT), all the MTJs showed high tunneling magnetoresistance (MR) ratios of about 100% which was almost independent of the formation temperature. The results indicate that GaO\(_x\) is an attractive tunnel barrier material for practical device applications.

1. Introduction
Semiconducting materials have recently attracted considerable attention to the tunnel barrier of MTJs because they provide unique properties and functions to the MTJ such as very low resistance-area product [1] and tunability of a tunneling current by electric fields [2].

Very recently, we have reported a high MR ratio up to 92% in fully epitaxial Fe(001)/GaO\(_x\)(001)/Fe(001) MTJs [3], where the GaO\(_x\) is one of the emerging semiconductors for practical applications. Such a high MR evidently indicates the existence of a spin-polarized coherent tunneling as observed in MTJs with MgO [4,5] and MgAl\(_2\)O\(_4\) [6] tunnel barriers. Although GaO\(_x\) is amorphous in the as-grown state, a single-crystalline GaO\(_x\) with a MgAl\(_2\)O\(_4\)-type spinel structure was successfully formed by an in situ annealing of the as-grown GaO\(_x\) layer, the method of which is so called solid-state epitaxial technique. However, the formation temperature of the single-crystalline GaO\(_x\) is too high (\(\approx\)500°C) to apply to practical applications.

In this study, we developed a novel fabrication process that can largely reduce the formation temperature of the fully epitaxial MTJ from 500°C to 250°C.

2. Sample preparations
MTJ films were prepared by molecular beam epitaxy with the same growth system as our previous report [3]. The structure of the MTJ was Au (10 nm) cap / Co (5 nm) pinned layer / Fe (5 nm) upper electrode / GaO\(_x\) (2 nm) tunnel barrier / MgO (1 nm) seed layer / Fe (30 nm) bottom electrode / MgO (10 nm) buffer layer on MgO(001) substrates. The Fe bottom electrode was annealed at 350°C for 10 min to improve the surface morphology. After the growth of MgO seed layer, the GaO\(_x\) barrier layer was deposited at 80°C under an O\(_2\) pressure of 1 \(\times\) 10\(^{-5}\) Torr. Then, an in situ annealing at the temperature \(T_{GaO}\), where \(T_{GaO}\) ranges from 250°C to 500°C, was carried out under an O\(_2\) pressure of 1 \(\times\) 10\(^{-7}\) Torr. The Fe upper electrode was grown and annealed at \(T_{Fe} = 250°C\) under the high vacuum below 1 \(\times\) 10\(^{-9}\) Torr. The \(T_{GaO}\) and \(T_{Fe}\) of the present MTJs are listed in Table I. Finally, Co-pinned and Au-cap layers were respectively deposited at RT.

Table I. Sample name, in situ annealing temperatures of GaO\(_x\) barrier \((T_{GaO})\) and Fe upper electrode \((T_{Fe})\) for the MTJ samples.

<table>
<thead>
<tr>
<th>Sample name</th>
<th>(T_{GaO} (°C))</th>
<th>(T_{Fe} (°C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>w/o</td>
<td>250</td>
</tr>
<tr>
<td>B</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>C</td>
<td>350</td>
<td>250</td>
</tr>
<tr>
<td>D</td>
<td>500</td>
<td>250</td>
</tr>
</tbody>
</table>

3. Results
Figures 1 (a)-(l) show reflection high-energy electron diffraction (RHEED) images of the GaO\(_x\) barrier layers (upper panels), the Fe upper electrode in the as-grown state (middle panels) and after an in situ annealing at \(T_{Fe} = 250°C\) (bottom panels) of the MTJs, respectively. For the GaO\(_x\) layers, no clear diffraction patterns were observed in the RHEED images for the as-grown state (Fig. 1a) and after the annealing at \(T_{GaO} = 250°C\) (Fig. 1b). With increasing \(T_{GaO}\), streaky patterns started to appear at around \(T_{GaO} = 350°C\) (Fig. 1c), and finally sharp streaky patterns could be observed at \(T_{GaO} = 500°C\) (Fig. 1d). These indicate that the GaO\(_x\) barrier layers are amorphous for the samples A and B, mixture of amorphous and crystalline for the sample C, and single-crystalline for the sample D, respectively.

The Fe upper electrodes of the samples A and B exhibited broad ring RHEED patterns in the as-grown state (Figs. 1e and 1f), suggesting polycrystalline Fe. In contrast, RHEED images of the samples C and D showed spotty patterns (Figs. 1g and 1h, respectively), implying single-crystalline Fe electrodes. It should be remarked that the broad ring patterns observed in the samples A and B changed to streak patterns after an in situ annealing at \(T_{Fe} = 250°C\) as displayed in Figs. 1(i) and 1(j), respectively. Consequently, the Fe upper electrodes for all the samples revealed similar sharp streak patterns after the in situ annealing at \(T_{Fe} = 250°C\). This strongly suggests that a sin-
gle-crystalline Fe upper electrode can be formed even on the as-grown GaOₓ barrier layer without a high temperature annealing up to 500°C.

From the RHEED observations, we can expect the existence of coherent spin-polarized tunneling, and thereby a high MR ratio beyond the Julliere’s model even for the samples A and B. Here, MR ratio is defined as \(\frac{R_{AP} - R_P}{R_P} \) where \(R_P \) and \(R_{AP} \) are the resistances between the two Fe electrodes with parallel and antiparallel magnetization alignments, respectively. Figure 2(a) shows a typical MR curve of sample A. The MR ratio up to 102% was observed at RT, which is close to the reported value in the fully epitaxial MTJ (92%) [3], strongly suggesting the existence of coherent spin-polarized tunneling. The MR ratios of the present MTJs are summarized in Fig. 2(b). The MR ratio hardly depends on the \(T_{GaO} \), suggesting that there is no remarkable difference in the magneto-transport properties among the MTJ samples.

4. Conclusions
We investigated structural and magneto-transport properties of Fe/GaOₓ(MgO)/Fe MTJs grown by different in situ annealing conditions for amorphous GaOₓ tunnel barrier. Fabrication of fully epitaxial MTJ was possible even without the in situ annealing of the GaOₓ barrier, resulting in a large reduction on the formation temperature of the fully epitaxial structure from 500°C to 250°C. At RT, all the MTJs showed high MR ratios of about 100% which was almost independent of \(T_{GaO} \). These findings will open a new pathway for developing GaOₓ-based practical applications.

Acknowledgments
This work was supported by the ImPACT Program of the Council for Science, Technology and Innovation (Cabinet Office, Government of Japan) and Grant-in-Aid for Scientific Research on Innovative Area, “Nano Spin Conversion Science” (Grant No. 26103003).

References