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Abstract

Current-induced magnetization switching is reported
in ultrathin films of Mn-based ordered alloy. The para-
magnetic CoGa-buffered and MgO-capped 2-nm-thick
L1o MnGa films clearly showed a perpendicular magnetic
anisotropy, measured by the micron-sized Hall devices.
The devices also showed that anomalous Hall hysteresis
curves as a function of the in-plane electrical current. The
current-induced switching phase diagram, i.e. the switch-
ing current vs. longitudinal in-plane magnetic field, indi-
cated that the observed -current-induced switching
stemmed from the spin-orbit torque due to the spin-Hall
effect for CoGa with the positive spin-Hall angle.

1. Introduction

Tetragonal magnetic ordered alloys with a high magnetic
anisotropy have attracted much attention for high-density
nonvolatile memory applications. Among many of such ma-
terials, tetragonal Heusler-like Mn-based alloys and its deriv-
atives, such as MnGa, Mn3Ga, and Mn3Ge have extensively
studied as a free layer for perpendicular magnetic tunnel junc-
tions (p-MTIJs). This is because those Mn-based materials
have very low net-magnetic moments owing to ferrimag-
netism, high uniaxial magnetic anisotropy, low Gilbert damp-
ing, and high spin polarization [1-10].

Recently we have discovered the low-temperature growth
method of 1-3-nm-thick MnGa films with well-chemically
ordered crystal structure and c-axis orientation using a para-
magnetic CoGa buffer layer [11]. Using this method, we have
developed the ultrathin MnGa/MgO p-MTJs, in which a huge
tunnel magnetoresistance (TMR) effect was predicted owing
to the epitaxial strain effect on its band structure [12]. Subse-
quently we have also demonstrated the in-plane current in-
duced spin-orbit torque (SOT) switching [13-14] in
CoGa/MnGa/Pt films with a perpendicular magnetic anisot-
ropy (PMA) [15]. Independently, the other group have also
reported the current-induced switching in GaAs substrate /
MnGa / heavy metal structure [16]. These layered-structures
with the heavy metal capping layer are useful for investiga-
tion of physics behind SOT, whereas it cannot be applied to

three terminal p-MTlJs devices for practical memories [17-18].

In this study, we report the observation of current-induced
magnetization switching in ultrathin MnGa films even in the
structure of CoGa/MnGa/MgO without a heavy metal cap-
ping layer [19].

2. Experimental Methods

The films were fabricated using the ultra-high vacuum mag-
netron sputtering, and the stacking structure was (100) MgO
single crystal substrate / MgO (10) / CossGass (20) / MnsoGasi
(2) / MgO (2) / Ta (2) (thickness is in nm) [Fig. 1(a)]. The
film structure was characterized by X-ray diffraction. The
magnetic properties were measured by a polar magneto-opti-
cal Kerr effect and vibrating sample magnetometer. The film
was patterned into the Hall devices with 6-um-width and 30-
pm-length using the conventional ultraviolet photo-lithogra-
phy and Ar ion milling [15]. The anomalous Hall resistance
Ry was measured using the four terminal method with dc or
pulse current. In this measurement, the out-of-plane magnetic
field H- or the longitudinal in-plane magnetic field H, was ap-
plied [Fig. 1(a)]. All the measurements were performed at
room temperature.

3. Experimental Results and Discussion

The Ry as a function of H. is shown in Fig. 1(b), which
was measured with the dc current /4. of +1 mA. The rectan-
gular hysteresis is clearly observed and the coercively poH. is
about 150 mT. The effective PMA field H T was ~ 2.6 T
evaluated from the Ry-H, curve (not shown here). Saturation
magnetization was 350 + 50 kA/m, so that the effective PMA
constant thickness product K, # was ~ 0.5 mJ/m>.

Figures 2(a), 2(b), and 2(c) show Ry as a function of the
pulse current /, with H, of 100, 0, and -100 mT, respec-
tively. The pulse duration for the current pulse was 100 ps in
this measurement. The clear current-induced switching are
observed at I, ~ 20 mA. Magnetization process is reversed
with polarity of H,, as seen in the figures. In addition, the Ry
values show no remarkable change in case of wH,= 0 mT.
These behaviors are accord with current-induced SOT
switching observed previously in substrate/Pt/Co/Al-O films
with PMA [14]. The hysteresis loops also show the parabolic
change, which indicate the presence of the Joule heating. The
magnetic field stemming from the electric current, the so-
called Oersted’s field, is estimated to be about 4.5 mT at /, ~
22 mA, which may have negligible influences.

Figure 3 shows the magnetization switching phase dia-
gram, i.e., the switching current /. vs. Hy. When H, is positive
and large enough, the stable magnetization direction is down-
ward (upward) for positive (negative) I, over |Ic|. On the other
hand, when Hy is negative and large enough, the stable mag-
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netization direction is upward (downward) for positive (neg-
ative) I, over |I¢|. This symmetry of the phase diagram is the
same as that observed in substrate/Pt/Co/Al-O films with
PMA [14]. This suggests that the sign of the spin-Hall angle
for CoGa is positive, being the same sign as that for Pt.

The switching current density J. in the experiment is esti-
mated to be 2 X 10 A/m? at uoH,=200 mT when the current
is assumed to flow only in the CoGa layer since the resistivity
of MnGa and CoGa are comparable [15]. This experimental
Jc is comparable to that observed in Pt/Co/Al-O films even
though K.t in our sample is by a factor of about 5 larger.
This may be partially attributed to the effect of the Joule heat-
ing and non-uniform magnetization switching. In addition,
the result suggests that the spin-Hall angle of the paramag-
netic CoGa is non-negligibly large. This could originate from
a high resistivity of CoGa as well as the relatively large spin-
orbit interaction of Ga 4p orbitals, which is comparable to that
of Pd 4d orbitals [19], though the effect of paramagnetic fluc-
tuation of magnetic moment for CoGa on the spin-Hall effect
is not yet clear. These issues are left to future studies.

4. Summary

Current-induced magnetization switching was studied in
the CoGa-buffered and MgO-capped 2-nm-thick L19 MnGa
films with PMA. The micron-sized Hall devices clearly
showed the magnetization switching as a function of the in-
plane electrical current only at the presence of the longitudi-
nal magnetic field. The switching phase diagram indicated
that the observed current-induced magnetization switching
stemming from SOT. This study demonstrated that SOT-
switching is possible in CoGa/MnGa/MgO which could serve
as the bottom layer for three terminal p-MTJs for the memory
scaled below 20 nm technology node.
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Fig. 1 (a) Cartoon of a film stacking structure and measurement ge-
ometry. (b) The anomalous Hall resistance Ru for the Hall bar meas-
ured at Jac =+ 1 mA.
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Fig. 2 The anomalous Hall resistance Ru vs. the pulse current [, with
(a) poH, =100, (b) 0, and (c) -100 mT. The data points near /, = 0
mA were removed. A pulse duration was 100 ps.
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Fig. 3 The current-induced switching phase diagram of the switching
current Ip vs. Hy.
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