High pH sensitivity and low concentration detection of urea/H₂O₂ by using IrO_x/HfO_x membrane in electrolyte-insulator-semiconductor structure

Surajit Jana¹, Anisha Roy¹, Jian-Tai Qiu^{2,3}, Siddheswar Maikap^{1,2,*}

¹Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University (CGU), Tao-Yuan, 333, Taiwan

²Division of Gyn-Oncology, Department of Obs/Gyn, Chang Gung Memorial Hospital (CGMH), Tao-Yuan, Taiwan

³Department of Biomedical Sciences, School of Medicine, Chang Gung University (CGU), Tao-Yuan, Taiwan

*Corresponding author : Tel : 886-3-2118800 ext. 5785 Fax: 886-3-2118507, E-mail: sidhu@mail.cgu.edu.tw

Abstract

Iridium-oxide (IrO_x) on hafnium oxide (HfO_x) membrane in electrolyte-insulator-semiconductor (EIS) structure with high pH sensitivity of 72 mV/pH, low concentration of 1 nM urea and 0.5 pM H₂O₂ has been reported for the first time. Due to porous IrO_x and catalytic activity of both IrO_x and HfO_x membranes, a high pH sensitivity is obtained. In contact of H₂O₂, the Ir^0 changes to Ir^{4+} and Hf^{2+} changes to Hf^{4+} states, which are confirmed by X-ray photo-electron spectroscopy.

1. Introduction

First ion-sensitive field effect transistor (ISFET) with SiO₂ insulator for bio-chemical application was proposed by Bergveld in 1970 [1]. In present, the detection of ions and molecules in a bio-chemical environment plays an important role in chemical science and biotechnological application. In this article, we propose the EIS structure due to its some advantages like simple structure, label-free detection, fast pH response time, easy fabrication process and low cost [2]. Among various types of reported high- κ oxide materials [3-5], IrO_x on HfO_x is one of the most reliable metal-oxide materials to perform good sensing characteristics. The sensor performs high sensitivity as well as low concentration (0.5 pM) detection of H₂O₂ and 1 nM urea to identify some disease in analogy with acidity, kidney malfunction, indigestion and ulcers of human body in future.

2. Device fabrication

A 4" p-type Si (100) wafer was cleaned by standard Radio Corporation of America (RCA) process to remove the native oxide from the surface. Then 40 nm-thick SiO_2 layer was grown on Si wafer by dry oxidation process. Then 2 nmthick HfO_x film was deposited on SiO₂ layer by using RF. sputtering process. Then 300 nm-thick Al was deposited as a backside contact of Si wafer by thermal evaporation. A sensing area of 3.24 mm² was defined by negative photo-resist (PR) SU8 using the photolithography process and fabricated on copper (Cu) printed circuit board (PCB) using Ag.

3. Results and discussions

Fig. 1 shows X-ray photo-electron spectroscopy (XPS) characteristics of Hf4 $f_{7/2}$ ($4f_{5/2}$) at 16.8 eV (18.4 eV), which represents the hafnium in the HfO_x film formed a mixed valence of Hf²⁺ and Hf⁴⁺ The peak binding energy (BE) at 17.6 eV (19.3 eV) and 16.2 eV (17.9 eV) corresponds to Hf⁴⁺ from HfO₂ and Hf²⁺ from HfO [6]. In Fig. 2, the O1s spectrum has the peak energy at 530.6, 532.2 and 533.6 eV. [7]. Fig.3 shows the BE peak line of Ir4 $f_{7/2}$ ($4f_{5/2}$) at 61.1 eV (64.1 eV) and 62.1 eV (65.1 eV) corresponds to metal Ir and IrO₂ (Ir⁴⁺) respectively [8]. The C-V characteristics of HfO_x

(Fig. 4) and IrO_x (Fig. 5) sensor is investigated from pH 2-10 at an optimized frequency 100 Hz. Fig. 6 shows the sensitivity and linearity comparison in between SiO₂, HfO_x and IrO_x membranes. The HfO_x sensor shows improved sensitivity (51 mV/pH) as well as good linearity (99.8%) than bare SiO₂ (35mV/pH and 94.1 %), whereas IrO_x membranes show the super-Nernstian response (72 mV/pH) and good linearity (99.9%) because of its porosity nature. The HfO_x sensor shows acceptable drift of 3.37 mV/hr (Fig. 7) as well as lower hysteresis of approximately 8 mV (Fig. 8). Fig. 9 indicates the reference voltage (V_{fb}) shift with different concentration of urea. During this measurement, we use 5 U urease enzyme to hydrolyze urea into ammonium (NH_4^+) , CO₂ and OH⁻ ions. These OH⁻ ions increase the pH value of the electrolyte solutions; as a result the V_{th} increases [9]. The limit of detection is 1 nM in a linear range of 10-500 nM. Fig. 10 shows the C-V characteristics of HfO_x sensor with and without H_2O_2 . Time response behavior [Fig. 11] represents the reversible properties of the device. Fig. 12 shows the calibration curve HfO_x and IrO_x/HfO_x membranes with different concentration of H₂O₂. The V_{fb} gradually increases with increasing the H₂O₂ concentration due to increase of the oxidation state from Hf⁰ to Hf⁴⁺ as well as the work function increases from 3.9 to 4.3 eV also electron affinity increases from 0.114 to 2 eV [10-11]. The limit of detection is 10 pM of HfO_x and 500 fM of IrO_x membrane. The reason to sense H_2O_2 is due to Ir^0 changing to Ir^{4+} and Hf^{2+} changing to Hf^{4+} oxidation states. On the other hand, pure SiO2 membrane does not sense H₂O₂. Therefore, the catalytic activity of porous Ir on HfO_x membrane plays a role to sense H₂O₂. This sensor can be reused because of reversible properties.

4. Conclusions

The $IrO_x/HfO_x/SiO_2/p$ -Si EIS structure has shown high pH sensitivity of 72 mV/pH, 1 nM urea and 0.5 pM H₂O₂ detection. This novel sensor is useful for health care unit in future due to its high potential sensing performance. In future, this can detect prostate/breast cancer biomarker.

Acknowledgements

This work was supported by Ministry of Science and Technology (MOST), Taiwan under contract number: MOST-105-2221-E-182-002.

References

[1] P. Bergveld et al., IEEE trans. Biomed. Eng.,17(1970)70. [2] P. Kumar et al., Nanoscale Res. Lett.,11(2016)434. [3]J. Y. Oh et al, Sensors and Actuators, B, 171-172 (2012) 238. [4] M. Chen et al., Sensors and Actuators, B, 192(2014) 399. [5] C. M. Yang et al., J. Vac. Sci. Technol. B, 32(2014)03D113 [6]S. S. Lin et al., Appl. Surf. Sci., 380(2016)229. [7]L. Minati et al., J. Phys. D: Appl. Phys.,42(2009)015408. [8] J. C. M. Silva et al., ChemElectroChem.,4(2017)1101. [9]P. Kumar et al., Journal of The Electrochemical Society, 163(2016)B580. [10] A. Kuriyama et al., ESSDERC,(2006)109. [11]S. Monaghan et al., Solid-State Electronics,53(2009)438.

Fig. 1 XPS characteristic peaks of Hf4f state from HfO_x membrane on SiO₂/p-Si substrate with Hf²⁺ and Hf⁴⁺ states.

Fig. 5 C-V characteristics of 2 nm-thick HfO_x (Ar:O₂=20:5) membrane in EIS structure from pH 2-10.

Fig. 7 Drift characteristics of SiO_2 and HfO_x stacked EIS sensor in pH 7 for 8 hours. Drift of IrO_x membrane is less than 5 mV.

Fig. 10 C-V characteristic with PBS buffer and 10 pM H_2O_2 concentration at 5 mL PBS (pH 7) solution. Inset fig. shows the shift of H_2O_2 with respect to buffer solution.

Fig. 2 XPS spectra of O1s from HfO_x membrane on SiO₂/p-Si substrate.

Fig. 4 C-V characteristics of 2 nm-thick IrO_x membranes in EIS structure from pH 2-10.

Fig. 8 Hysteresis characteristics of SiO_2 and HfO_x based EIS sensor of 10 cycles through pH 8-6-8-10-8 loop.

Fig. 11 Time response behavior of HfO_x based sensor in 10 pM H_2O_2 concentration at 5 mL PBS (pH 7) solution.

Fig. 3 *Ir4f* spectra from IrO_x membrane on SiO₂/p-Si substrate with Ir^0 and Ir^{4+} oxidation states.

Fig. 6 Comparison of sensitivity and linearity behaviors in between SiO_2 , IrO_x , and HfO_x membranes.

Fig. 9 Urea sensing with low concentration of 1 nM by using HfO_x membrane with different concentration of urea at 5 mL Tris buffer (pH7.4) solution.

Fig. 12 V_{fb} shift with different H_2O_2 concentration of SiO₂, HfO_x and IrO_x membrane at 5 mL PBS (pH 7) solution (a = intercept, b = slope value).