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Abstract 

Resistive memories (RRAM) are today promising 

candidates to implement artificial synapses in neuro-

morphic hardware systems. This paper focuses on 

RRAM to implement synaptic plasticity, the key feature 

allowing learning and memory in the brain. First, we 

will provide a comprehensive overview of current re-

search on RRAM technologies to implement plasticity 

mechanisms, such as Spike-Timing-Dependent Plastic-

ity (STDP), Short-Term Plasticity (STP) and Long-

Term Plasticity (LTP). Second, we will present how dif-

ferent forms of plasticity can be implemented in a real 

application case: i.e. a spike-based neuromorphic system 

for real-time decoding of neural signals. We will show 

that STDP (a type of Synaptic Learning or LTP) allows 

the neural networks to learn patterns, while the Short-

Term Plasticity (a type of Synaptic Adaptation) im-

proves accuracy in the presence of background noise in 

the input data. 
 

1. Introduction 

Extracting useful information from unstructured data 

(e.g. raw sensor data) is a key requirement for future mobile 

and Internet of Things applications. Neuromorphic compu-

ting aims to reach this objective by miming the brain per-

formances in terms of low-power and versatility [1]. Never-

theless, the industrial implementation of neuromorphic 

hardware still presents several major challenges, ranging 

from material science to innovative devices and circuits en-

gineering. Impressive milestones have been reached re-

cently, but the demonstrated brain-inspired systems mainly 

rely on purely-CMOS solutions and lack of scalable imple-

mentation for the synapses connecting the neurons [2]. Ad-

ditionally, with pure CMOS technologies, it is quite expen-

sive to provide synapses with ‘plasticity’ features, due to the 

large Silicon area needed. In this context, RRAM devices 

with attractive bio-inspired functionalities and related low-

power performance provide an optimal solution for compact 

implementation of synapses and are, therefore, a key ele-

ment to allow future implementation of neuromorphic hard-

ware. 
 

2. Synaptic Plasticity Features in RRAM 

The synaptic plasticity can be defined as the modifica-

tion of the synaptic conductance as a function of the neuron 

activity [3]. Different plasticity rules exist and several ap-

proaches can be used to classify the synaptic plasticity 

mechanisms [4]. The first approach is the “causal descrip-

tion”, based on the origin of the synaptic conductance mod-

ification (Fig.1). A first form of plasticity is the so-called 

Synaptic Learning (or Hebbian-type Learning), the synaptic 

weight depends on the correlation between the pre- and 

post-neuron spiking activity. Depending on the signal rep-

resentation, i.e. rate- or temporal-coding, the Synaptic 

Learning can be formulated such as Spike-Rate-Dependent-

Plasticity (SRDP) or Spike-Timing-Dependent Plasticity 

(STDP) with neuronal activity defined as the mean firing 

rate or the spike timing, respectively [5]. In the latter plas-

ticity form, the pre-synaptic spike is required to shortly pre-

cede the post-synaptic one to induce potentiation (conduct-

ance increase), whereas the reverse timing of pre- and post-

synaptic spike elicits depression (conductance decrease) 

(Fig1). RRAM devices have demonstrated to be good can-

didates to implement STDP [6-8]. A second form of synap-

tic plasticity can be referred to as Synaptic Adaptation. In 

this case, synaptic weight modification depends on the ac-

tivity of the pre- or post-neuron activity only. The Synaptic 

Adaptation can lead to an increase (facilitation) or decrease 

(depression) of the synaptic conductance.  

The distinction between Synaptic Learning and Synaptic 

Adaptation seems very useful to classify the different syn-

aptic processes and to evaluate their contribution to the 

learning process. One major difficulty is that both Synaptic 

Learning and Synaptic Adaptation can manifest simultane-

ously and it is complicated to make a clear distinction be-

tween them. By means of system level simulations of a real 

application, we tried to shed new light on the role of these 

two different types of plasticity [9-10]. 

A second approach, used to describe the synaptic plas-

ticity, can be defined as “phenomenological description”: 

synaptic weight modifications can be either permanent (i.e., 

lasting for month or years) or temporary (i.e., recovering 

quickly their initial state) [11]. This observation leads to the 

definition of Long-Term Plasticity (LTP) and Short-Term 

Plasticity (STP), respectively (Fig1). The boundary classifi-

cation into Long-Term (LT) and Short-Term (ST) effects is 

not well defined and should be considered with respect to 

the task to be realized. From a phenomenological point of 

view, the Spike-Timing-Dependent Plasticity (STDP) is 

Fig.1 Synaptic Plasticity classification observed in biological synapses 
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verified on long time scale (it is a form of LTP), the Synaptic 

Adaptation, on the contrary, is most often observed on short 

time scale (it is a form of STP). The first proposition of STP 

was realized in a nanoparticles/organic memory transistor 

(NOMFET) [12]. Equivalently, STP in two terminal devices 

can be implemented by taking advantage of the volatility of 

the different memory technologies, i.e. low retention of the 

state that is often a drawback for pure memory applications 

[13-14]. Moreover, STP has been implemented in non-vol-

atile RRAM compounds using a specific programming 

methodology [9-10]. 

3. Phenomenological Implementation: co-existence of 

STP and LTP in the same RRAM device 

If the contribution of STP and LTP processes to compu-

ting is not completely understood in biological systems, 

both STP and LTP effects in synaptic connections has been 

evidenced and should play a crucial role. A first approach 

to combine STP and LTP processes is to consider that repe-

tition of STP effects should lead to a LTP modification in 

the same synaptic connection. Ohno et al. [11] reported for 

the first time the transition from STP to LTP in atomic 

bridge technology. In this case, the synaptic conductivity is 

increased due to the formation of a conductive filament 

across the insulating gap. While for low frequency, the fila-

ment tends to relax between pulses; higher frequencies lead 

to a strong bridge that maintains the device in the ON state. 

In this case, the transition from STP to LTP, is associated to 

the mean firing rate of the pre-neuron. Both STP and LTP 

follow the Synaptic Adaptation plasticity rule. A similar ap-

proach to combine both STP and LTP in the same electro-

chemical metallization cell has been proposed in [14]. The 

transition from the volatile to the non-volatile regime is 

tuned by the number and the size of the conductive fila-

ments.  
.  

4. Causal Implementation: co-existence of STP and 

LTP in a neuromorphic system (using two RRAM de-

vices)  

We proposed a circuit strategy to implement Spike-Tim-

ing- Dependent Plasticity (Synaptic Learning) and depress-

ing Short-Term Plasticity (Synaptic Adaptation) using two 

separate RRAM-based synapses [9-10]. The main ad-

vantage of this approach is that STPD (Long-Term Plastic-

ity) and depressing Short-Term Plasticity can occur at the 

same time. The circuit, presented in Fig.2a, allows to con-

nect the RRAM-based synaptic compounds yi(t) and wij that 

are able to reproduce the depressing STP and the STDP 

(LTP) as described in [9-10]. The strength of the synaptic 

connection (or synaptic conductance) between the input 

neuron, Ai, and the output neuron, Bj, is wij*yi(t), where wij 

is the strength modulated according to the STDP (LTP) and 

yi(t) is a scaling factor that describes the depressing STP. 

When an input neuron receives an incoming event, it gener-

ates a small voltage pulse (Vin) that propagates to the output 

neuron through yi(t), the buffer and wij. The resulting post-

synaptic current (Iout) is proportional to wij*yi(t). In order to 

study the role of the STDP (LTP) and depressing STP, we 

performed full system-level simulations of a real applica-

tion. A Fully Connected Neural Network (FCNN) for real-

time decoding of neural signals has been implemented using 

the N2D2 simulator [9]. The neurons are modeled with 

Leaky Integrate and Fire model and the synapses emulate 

the depressing STP and the Long-Term STDP as described 

in [9]. In Fig.2b the metrics to evaluate the network perfor-

mances (i.e. the Detection Rate, DR, and the False Positive 

Rate, FPR) are shown. The network is designed to learn and 

distinguish action potentials (i.e. spikes) from background 

noise. If the signal-noise-ratio (SNR) is high (80 in the 

‘ideal’ case), the network without STP achieves a DR and 

FPR around 97% and 1.6%, respectively. For a SNR=27, 

the network performance without depressing STP decreases 

significantly due to the high FPR. For a SNR=27, the intro-

duction of depressing STP is mandatory to guarantee the 

network functionality. It allows to decrease the FPR by 35% 

while the DR decreases only 2.5%. Thanks to the introduc-

tion of the Synaptic Adaptation (depressing STP), the net-

work learns to stop responding to noise stimuli, thus im-

proving the performances in presence of highly noisy input 

data. 
 

5. Conclusions 

In this paper, we reviewed different plasticity mechanisms 

that can be implemented in RRAM devices. Then, we 

demonstrated that the combination of depressing Short-

Term Plasticity (STP) and STDP (LTP) makes the neuro-

morphic systems highly robust against environmental noise 

in the input data. The STP implementation allows to reduce 

the False Positive events generated by the input noise, thus 

improving the network performances. 
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