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Abstract 

We discuss our motivation behind development of 

memristive crossbar based Deep Neural Network hard-

ware for automotive applications and briefly review ex-

perimental demonstrations of perceptron circuits and 

our progress in development of efficient training algo-

rithms. 

 

1. Introduction 

The field of artificial intelligence is experiencing a new 

renascence with Deep Neural Networks algorithms consist-

ently outperforming other machine learning approached by a 

wide margin [1]-[4]. Though offering unprecedented per-

formance DNNs are very computationally expensive and 

require powerful and power-hungry parallel hardware such 

as GPUs. This approach is suitable for cloud-based applica-

tions, but it is not acceptable for automotive applications in 

which life-critical safety systems, e.g. object detection and 

recognition, have to be implemented in-car and operate ro-

bustly in real time without failure due to communication 

speed or computing resource availability. Furthermore, the 

hardware have to be low power to guarantee fuel and/or 

battery efficiency and minimize environmental impact of 

CO2 exhaust. Thus low power and high speed hardware is 

crucial for automotive applications. 

A lot of effort is currently being put into development of 

mobile GPUs and digital accelerators for DNNs [5]-[10]. An 

alternative approach is to develop specialized hardware that 

utilizes neural network’s potential for low-power and 

high-speed information processing [11], [12]. The majority 

of such efforts rely on conventional technology, such as 

CMOS circuits to implement artificial neural networks 

[13]-[19]. 

Emerging memory device technologies [20], while not 

yet mature for large scale implementations, could offer fur-

ther improvements in performance in the future [21]. One of 

the most promising proposals utilizing emerging memory 

technologies is hybrid CMOS-crossbar circuits [12] with 

integrated two- or three-terminal resistive switching 

(memristive) devices [22], [23], which can be implemented 

using phase change memories, magnetic tunnel junctions, 

ferroelectric memories, solid state electrolyte, or metal oxide 

resistive switching devices [24]-[29]. 

Our focus is on the latter in particular, as metal oxide 

devices such as TiO2-x offer analog memory functionality 

with up to 100 memory states [30] and small footprint due to 

no use of selector devices [31]. Furthermore, our estimates 

 

Fig. 1 Deep Neural Networks computational cost vs. power re-

quired for real-time implementation. 

 

show that CMOS-nanocrossbar circuits based on metal ox-

ide memristors can offer up to two orders of magnitude im-

provement in computational efficiency over conventional 

CMOS technology (Fig. 1). 

 

2. Artificial neural networks based on memristive cross-

bar circuits 

Typical CMOS-crossbar implementation of neural net-

works is realized by integrating memristive devices into 

crossbar circuits to implement analog weights (synapses) 

and combining it with CMOS circuitry that implements 

neuron functionality and other peripheral functions (Fig. 2). 

 

 

 

Fig. 2 Electrical circuit of a CMOS-memristive crossbar imple-

mentation of a neural network. 
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Inputs and neurons outputs are coded by voltages V, 

while synaptic weights – by memristive conductance G. The 

resulting currents I = GV are injected into the common wire 

and summed up according to Kirchhoff’s law before being 

converted to voltage using operational amplifier. As a result, 

memristive crossbars enable compact analog implementa-

tion of vector-matrix multiplication, core computation of 

artificial neural networks and Deep Neural Networks, di-

rectly in-memory. 

 

3. Experimental results 

Single layer perceptron was the first experimental 

demonstration of a memristive crossbar based neural net-

work [31]. A 12x12 memristive crossbar was used to im-

plement synaptic weights and perform analog vector-matrix 

multiplication with all neuron functionality emulated using 

measurements set-up. 

The work was later expanded to experimentally demon-

strate a multilayer perceptron with one hidden layer using 

two 20x20 memristive crossbars with neuron circuits inte-

grated on a printed circuit board [32]. 

 

4. Training neural networks based on memristive cross-

bar circuits 

Training of the neural networks based on memristive 

crossbar circuits comes with challenges specific to physics 

of memristive devices and crossbar topology. The challeng-

es include the need to program selected memristive devices, 

which exhibit highly non-linear behavior [30], in practical 

amount of time with certain precision and without disturbing 

the memory states of other devices on the same crossbar 

lines. We have considered two hardware implementations of 

a backpropagation algorithm, ex-situ and in-situ. 

In ex-situ training, the weights are trained in a software 

network and then imported into crossbar conductances by 

programming individual devices using, for example, feed-

back tuning algorithm [33]. The advantage is that any train-

ing algorithm can be implemented in software and tuning 

analog memory requires minimal peripheral circuitry. The 

disadvantage is that a relatively crude precision of analog 

memory has to be taken into account during training. Most 

importantly, fabrication defects such as stuck-on-close and 

stuck-on-open devices can make it impossible to import 

desired weight values resulting in DNN performance degra-

dation [34], [35]. 

The alternative is in-situ training approach that relies on 

implementing conductance adjustments directly in hardware. 

We have adapted backpropagation to memristive crossbar 

circuits as a short series of pulses with variable amplitude 

and duration to train conductances, two pulses per crossbar 

line and four pulses for the whole crossbar for batch and 

stochastic training, respectively [35]. 

We have benchmarked both ex-situ and in-situ training 

algorithms on a variety of DNN architectures and data sets 

(MNIST, GTSRB, CIFAR-10) and demonstrated the scala-

bility of memristive crossbar circuits and recognition per-

formance comparable to that of conventional software-only 

implementations of DNNs [34], [35]. 

 

3. Conclusions 

   We have briefly reviewed the need for low power hard-

ware for Deep Neural Networks for automotive applications, 

the motivation behind our development of memristive 

crossbar circuits and various approaches. We have also in-

troduced the experimental demonstrations of single layer 

and multilayer perceptrons and training algorithms we have 

developed. 
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