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Abstract 
This paper investigates quality of randomness in the 

first generation of 3D analog RRAM Physically Unclona-
ble Function (PUF) primitives using measured and gath-
ered data from fabricated RRAM crossbars. This study is 
significant as the randomness quality of a PUF directly 
relates to its resilience against various model-building at-
tacks, including machine learning. Experimental result 
verifies near perfect (50%) predictability. It confirms the 
PUF’s potentials for large-scale, yet small and power effi-
cient, implementation of hardware intrinsic security 
primitives. 

1. Introduction 
Physically Unclonable Functions (PUFs) are relatively 

new breed of cryptographic primitives that gain advantage of 
otherwise disadvantageous variation in physical system man-
ufacturing with the aim to produce secrets that are unclonable 
[1]. While their role in security hierarchy is still under study, 
they eliminate the need to explicitly store secrets in memory 
(e.g. EEPROM) and therefore are expected to significantly 
improve security. A PUF is, in its mathematical form, a hard-
ware implementation of a one-way function that maps an in-
put (challenge) to an ideally unique and unpredictable output 
(response). A PUF should ideally be unclonable against a 
wide range of adversarial attacks including: modeling, ran-
dom guessing, man-in-the-middle, wide variety of side-chan-
nels and machine learning attacks. Recently, there has been 
an increased focus on implementing hardware-intrinsic secu-
rity primitives based on inherent randomness in emerging 
electronic memory technologies. 

Memory hardware such as RRAM (resistive random ac-
cess memory) crossbars are among the most promising alter-
natives for large scale memory class, due to their relative low-
cost fabrication, simple operation (yet rich switching dynam-
ics), and a major intrinsic, layout-independent, variations in 
their switching characteristics. We have recently proposed a 
high-performance RRAM-based PUF architecture based on 
monolithically integrated 3D analog crossbar arrays and ex-
perimentally verified its robust performance in a large-scale 
study [2]. Our results indicate the immense potential of state 
tuning and harnessing conductance nonlinearity in analog 
crossbars for reconfigurable and secure security primitives. 
Herein, we present a test on true randomness generation of 
these PUFs entirely based on experimentally gathered re-
sponse string of length of 352 kb. The test has a conventional 

part based on NIST’s statistical test suite, and more deliberate 
evaluation of the PUF resilience against various model-build-
ing attacks using advanced deep learning models. 

2. Analog RRAM-based PUF operation 
A fully passive and monolithically integrated 2×10´10 

TiO$%&  analog crossbars with an active device area of 
350´350 nm2 was employed for the RRAM-based PUF de-
sign (Fig. 1a). The top and bottom crossbars share a middle 
electrode. Full details on fabrication process can be found in [3]. 
Individual devices show a large dynamic range of resistance 
and an excellent I-V nonlinearity. While the analog crossbars 
show excellent uniformity in their switching and performance 
characteristics (Fig. 1b), the small spatial variations in re-
sistance across the array can be used as an effective source of 
randomness. 

To this end, our proposed PUF architecture (Fig. 1c) em-
ploys a selection scheme that generates 1-bit response based 
on differential comparison between currents passed through 
two sets of selected rows/columns, each includes sneak-path 
currents component through neighboring unselected devices. 
The aim is to implement an effective one-way function that 
incorporates array-scaled random spatial variations, thereby 
complicating many side-channel probing attacks, therefore 

T/M/BE: Top/middle/bottom Elec-
trode 

Fig 1. (a) Top-view scanning electron microscopy (SEM) image, 
equivalent circuit and cross-sectional schematic of the 3D stacked 
crossbar. (b) I-V curves for all 2×10×10 devices with two representa-
tive curves being highlighted. (c) PUF primitive operation scheme. 
(d) Example of the tuned crossbar. 
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Table I Machine learning test configuration and predictability. 

allows for more dependable operation. The significant differ-
ence between our RRAM PUF and a conventional CMOS-
based PUF is the additional layout-independent variation in 
RRAMs. We extract this feature by varying applied bias, 
readout voltage, which employs device nonlinearity as an ad-
ditional source of entropy [2]. To effectively combine the 
contribution of variation sources to the overall transfer func-
tion and avoid unintentional systematic biases, all devices in 
the array are programmed in a tight highly nonlinear range.  

3. Evaluation of randomness 
In Ref. [2], we have exhaustively evaluated the analog 

RRAM-based PUF against key PUF metrics of randomness 
and stability. Here, we investigate the degree of predictability 
and statistical randomness of the PUF response, utilizing a 
relatively large subset of the 1-bit responses at different bi-
ases (350 kb×5 for 5 different biases included in the network 
challenge). 

Machine Learning Tests 
We run predictive machine learning tests using long 

short-term memory (LSTM) architecture, a special case of re-
current neural network (RNN), capable of handling long-
range dependencies in general purpose sequence modeling 
tasks [4, 5]. We have used three LSTM network configura-
tions to test response sequences generated from the proposed 
PUF as shown in Table I. Dense is a fully connected layer 
which all nodes are connected to all output nodes of the pre-
vious layers, therefore, “Dense-Dense” configuration uses 
two dense layers. Dropout randomly chooses 50% of the pre-
vious layer’s output nodes. Softmax here is the final layer of 
the network to obtain a vector of normalized probabilities 

across the output. The results show almost ideal level of un-
predictability using three conditions for training sequence 
length and output dimension. 

Statistical Tests 
The NIST statistical randomness test suite is employed to 

further evaluate the random quality of the PUF response 
string. The test suite includes 17 different tests including two 
similar tests running on different directions of bit sequence. 
In each test, the sequence is interpreted as random if p-value 
is greater than significance level (α=0.01) [6]. The computed 
p-values and successful test results are shown in Fig. 2a. We 
statistically quantify the degree of randomness using 200×10 
kb response sequences. Results then can be interpreted with 
(1) the proportion of sequences that pass the statistical test 
(proportion analysis) and (2) the distribution of p-values for 
uniformity (uniformity analysis). The proportion analysis re-
sults show the passing rate at 0.975 (lowest) from test number 
15, Linear Complexity test, and 1.00 (highest) from test num-
ber 2, Block Frequency test. The distribution of p-values as-
sessment is to ensure a uniformity, p-valueT. For p-valueT, if 
it is smaller than 0.0001, which is the significance level rec-
ommended for a uniformity test by NIST, p-values are con-
sidered as non-uniform. Figs. 2b-e demonstrate the histo-
grams for the distributions of p-values, illustrating the suc-
cessful uniformity results obtained for the device. Due to the 
space limitation, only 4 out of 15 results are demonstrated 
here. 

4. Conclusions 
   We have investigated and verified randomness of our pro-
posed analog 3D-RRAM PUF using two standard and ad-
vanced tests, and hence, demonstrated its resilience against a 
range of model building and machine learning attacks. We 
demonstrated near ideal unpredictability in our deep learning 
test using three different networks architectures and success-
ful statistical evaluation using NIST statistical test suite with 
near uniform distribution of all p-values. 
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Configuration Training sequence length Output dimension of Predictability (%) 

LSTM-Dropout-LSTM-Dense-Dense-Softmax 
301 LSTM: 128, Dense: 128, 2 50.41 
101 LSTM: 128, Dense: 128, 2 50.52 
64 LSTM: 256, Dense: 256, 2 50.28 

Fig 2. Histograms showing the uniformity of p-values obtained from 
(a) block-frequency, (b) longest run, (c) non-overlapping templates 
and (d) serial sub-tests. 
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