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Abstract 

Sn-doped -Ga2O3 films were grown on c-plane sap-

phire substrates by mist chemical vapor deposition (mist 

CVD). The film grown at 450C was single crystalline and 

conductive. Using this conductive single crystalline -

Ga2O3 film, a metal-semiconductor-metal (MSM)-type 

photodetector was fabricated. Current-voltage character-

istics of this photodetector showed a rectifying property. 

Responsivity intensity was observed above the bandgap 

energy of 5.2 eV. 

 

1. Introduction 

Ultraviolet (UV) photodetectors with detection wave-

length range below 280 nm have potential applications such 

as flame detection, sterilization, and medical cure. Most of 

researches have been carried out for high-Al-content AlGaN-

based UV photodetectors [1] against their difficulties in epi-

taxial growth. We have been focusing on corundum-struc-

tured gallium oxide (-Ga2O3) as an alternative material. The 

-Ga2O3 has a wide bandgap energy of 5.3 eV. There are also 

a lot of corundum-structured oxide semiconductors such as 

-In2O3, -Al2O3 and -Fe2O3. Moreover, bandgap engineer-

ing of -Ga2O3 is possible by alloying with In or Al. Prefer-

ential control of their compositions allows us to fabricate co-

rundum-structured heterostructures [2]. However, undoped-

Ga2O3 is an insulator.  

Mist chemical vapor deposition (mist CVD) is a solution-

based growth technique using a simple system configuration 

with low cost, low environmental road, and it can be per-

formed even under atmospheric pressure [3]. Recently, the 

growth of conductive Sn-doped -Ga2O3 films by mist CVD 

has been reported [4, 5]. In this study, a metal-semiconductor-

metal (MSM)-type photodetector structure was fabricated us-

ing a conductive single crystalline -Ga2O3 film.  

 

2. Experiments 

Gallium acetylacetonate and tin () chloride dihydrate 

were used as source materials for these growths which were 

solved in deionized water with a small amount of hydrochlo-

ric acid. The concentration of Sn solution was 2.0  10-4 

mol/L, which is followed in ref. 4. The solution was atomized 

using an ultrasonic transducer at 2.4 MHz and the formed aer-

osols were transferred to a quartz furnace using a carrier gas 

of nitrogen. Sn-doped Ga2O3 films were then grown on c-

plane sapphire substrates set in the furnace. The substrate 

temperatures were changed at 400, 450 and 500C. The crys-

tal and electrical characteristics of these films were investi-

gated using X-ray diffraction (XRD) and Hall effect measure-

ment, respectively. 

-Ga2O3-based photodetector with a metal-semicondu- 

ctor-metal (MSM) structure was also fabricated by employing 

Ti (10 nm)/Al (100 nm) and Ni (10 nm)/Au (100 nm) pads as 

an Ohmic and Schottky electrodes, respectively. Current-

voltage characteristics and photo-responsivity of this photo-

detector were investigated. Monochromatic light source gen-

erated from a 450 W Xenon lamp was used for the photo-

responsivity measurements.  

 

3. Results and discussion 

Figure 1 shows XRD 2- scan profiles of the films 

grown at 400, 450 and 500C. In the sample grown at 500C, 

both (0006)-Ga2O3 and (-402)-Ga2O3 diffraction peaks 

were observed. In the films grown at 400 and 450 C, (-

402)-Ga2O3 diffraction peak was mostly suppressed, indi-

cating to be single crystalline. The full-width at half maxi-

mum of the X-ray rocking curve in (0006)-Ga2O3 diffrac-

tion peak is 45 arcsec.  

Table 1 shows electrical characteristics measured by Hall 

effect measurement. The lowest resistivity of 1.5  10-2 cm 

was obtained in the film grown at 500 C. The single crystal-

line Sn-doped Ga2O3 film grown at 450C also showed con-

ductivity of 1.1  10-1 cm. The film grown at 400C was a 

high resistivity.  

Figure 2 shows schematic diagram of the MSM-type pho-

todetector. Current-voltage characteristics of the photodetec-

tor fabricated using the sample grown at 450C is shown in 

Fig. 3. It shows a rectifying property.  

Figure 4 shows photo-responsivity of the MSM-type pho-

todetector fabricated using the sample grown at 450C. Grad-

ual increase in responsivity intensity was successfully ob-

served above the bandgap energy of 5.2 eV. Additional peak 

at around 4.2 eV may be ascribed to transitions induced by 

intrinsic defects or impurities in Sn-doped Ga2O3 film. 
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Fig. 1. XRD 2- scan profiles of Sn-doped Ga2O3 films 

grown at 400, 450 and 500 C. 

 

 

 

Table 1. Electrical characteristics of Sn-doped Ga2O3 films 

grown at 400, 450 and 500 C. 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Schematic diagram of MSM-type photodetector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Current-voltage characteristics of photodetector fabri- 

cated using sample grown at 450C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Responsivity spectrum at room temperature in MSM-

type photodetector fabricated using sample grown at 

450C.  

 

 

 

4. Conclusions 

   Sn-doped Ga2O3 films were grown on c-plane sapphire 

substrates by mist CVD. Conductive single crystal -Ga2O3 

film was realized by adjusting growth temperature. The pho-

todetector with a metal-semiconductor-metal (MSM) struc-

ture was fabricated using the conductive single crystal -

Ga2O3 film. Current-voltage characteristics showed a rectify-

ing property. Gradual increase in responsivity intensity was 

successfully observed above the bandgap energy of 5.2 eV.  
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400    
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