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Abstract  

Unpassivated AlGaN/GaN high electron mobility transistors 
(HEMTs) with a record low or ideal sub-threshold swing SS 
(~60mV/decade) are fabricated on the extremely high quality free-
standing (FS) GaN substrate.  AlGaN/GaN heterostructure grown 
on FS-GaN in this work exhibits excellent material properties, 
such as ultralow FWHM (42.9 and 41.7 arcsec) for (0002) and 
(10-12) XRD peaks, and ultralow dislocation density (~104-105 
cm-2) measured by cathodoluminescence. Due to these extremely 
high quality material properties, the fabricated unpassivated 
AlGaN/GaN HEMTs achieve a record low SS (~60 mV/decade),  
low hysteresis of 54 mV, low on-state resistance of 0.5 mohm.cm2, 
Ion/Ioff ratio of ~106, and peak μeff  of ~1456 cm2V-1s-1. As 
compared to the reported oxide passivated GaN-based HEMTs on 
sapphire or Si, the unpassivated GaN-on-GaN AlGaN/GaN 
HEMTs in this work have achieved the smallest or lowest SS. 

Introduction 

GaN-based transistors are very promising for future high 
temperature power electronics, due to its wide bandgap (3.4 eV) 
and large critical electric field [1]. Over the past two decades, 
GaN-based devices have been extensively investigated and great 
improvement has been also achieved [2]. However, these devices 
have been mostly fabricated on foreign substrates, such as silicon, 
sapphire, and SiC. The major challenge for GaN-based transistors 
on foreign substrate is a high density of threading dislocations 
(108-1010cm-2) originating from the strained heteroepitaxial growth 
on the foreign substrate, which becomes problematic for devices 
under high power or high temperature operation.  In this work, 
extremely high quality AlGaN/GaN heterostructure was 
homoepitaxially grown on the 2 inch FS-GaN substrate, on which 
unpassivated AlGaN/GaN HEMTs were fabricated, and detailed 
device electrical characteristics were presented.   

Material Characterization 

Al0.25Ga0.75N(27nm)/GaN(1μm) structure shown in Fig.1 (a) 
was homoepitaxially grown by MOCVD on 2 inch Fe-doped FS-
GaN substrate [3]. Crystal quality of as-grown AlGaN/GaN 
structure was characterized by XRD rocking curves, shown in 
Fig.1 (b), in which ultralow FWHM (42.9 and 41.7 arcsec) for 
(0002) and (10-12) XRD peaks is obtained. With the (0002) 
reciprocal space map shown in Fig. 1 (c), the lattice constant (c) 
for GaN and AlGaN is measured to be 0.5184 and 0.5127 nm, 
respectively, indicating the AlGaN layer is subjected to a tensile 
strain in the lateral direction and a compressive strain in the 
vertical direction. High resolution TEM image shown in Fig.1 (d) 
reveals the perfect lattice structure of AlGaN/GaN layer. The Rsh 
mapping of the as-grown 2 inch AlGaN/GaN HEMT substrate is 
shown in Fig. 2, in which an average Rsh of 445 ohm/square and an 
average Hall mobility of ~1500 cm2V-1s-1 are obtained. Absence of 
yellow luminescence (YL) shown in Fig. 3 (a) indicates a low 
defect density for the as-grown AlGaN/GaN structure, and 
ultralow dislocation density (~104-105cm-2) is measured by 
cathodoluminescence shown in Fig. 3 (b). The root-mean-square 
(rms) before and after AlGaN/GaN growth is measured to be 1.1 
and 0.3 nm, respectively, by AFM shown in Fig. 3 (c) and (d).  

Device Fabrication 

Standard fabrication process was used to fabricate GaN-on-
GaN AlGaN/GaN HEMTs, and shown in Fig. 4(a). After active 
region formation using Cl2-based reactive ion etching, pre-gate 
cleaning step comprising native oxide removal by HCl was 
performed. Ti(50nm)/Al(200nm)/Ti(40nm)/ Au(40nm) stack was 
deposited as source/drain electrode, and formed ohmic contact 
after 850oC annealing for 3mins. Ni(70nm)/Au(30nm) was 
deposited as gate electrode. The fabricated AlGaN/GaN HEMTs 
in this work have no oxide passivation. Fig. 4 (b) and (c) show the 
cross-sectional TEM image of fabricated device and the gate stack.  

Electrical Results and Discussion 

The transfer characteristics of AlGaN/GaN HEMTs with a 
gate length LG of 3μm is shown in Fig. 5(a), and average SS 
(~65mV/decade) is obtained over the three orders of drain current, 
in which a minimum  SS (~54mV/decade) is obtained over one 
order of drain current, where the threshold voltage Vth is ~-3.1V. 
The inset of Fig. 5(a) shows the top view of an optical image of 
the fabricated device. Under VD of 1V, the voltage hysteresis at ID 
of 8μA/μm is ~54 mV [Fig. 5(b)]. Fig. 5(c) shows the output 
characteristics of the fabricated devices, in which the on-state 
resistance for the active region only is ~0.5mohm.cm2.  As shown 
in Fig.6, the gate leakage current starts to rapidly increase at VG of 
1V. Fig.7 and Fig. 8 show the SS and Ion/Ioff ratio versus gate 
leakage IG, respectively. Ion and Ioff is defined as the drain current 
at VD of 1V under gate voltage of Vth+3V and Vth-2V, respectively.  
IG is defined as the gate leakage under VD of 1V and Vth-2V.   The 
ID-VG curves under various high temperatures from 300K-420K is 
shown in Fig. 9.  According to the plot of Ln(JG) versus 1/Eox 
shown in Fig. 10, the dominant gate leakage mechanism is 
electron surface hopping with an activation energy of 0.02 eV. The 
field effect mobility μeff with a peak value of ~1456 cm2V-1s-1 is 
extracted using the C-V method, and the μeff as a function of carrier 
density Ns is shown in Fig. 10. A benchmarking of SS for GaN-on-
GaN and oxide passivated GaN-on-Si (or Al2O3) AlGaN/GaN 
HEMTs is shown in Fig.11, a record low or an ideal SS 
(~60mV/decade) is obtained for GaN-on-GaN AlGaN/GaN 
HEMTs in this work. 

Conclusion 

AlGaN/GaN HEMTs with an ideal sub-threshold swing SS 
(~60mV/decade) are fabricated on the extremely high quality free-
standing GaN substrate. Systematic study of materials properties 
and device characteristics exhibits that GaN-on-GaN AlGaN/GaN 
HEMTs are promising candidate for new generation high power 
device applications. 
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Fig.1. (a) HR-XRD results (inset: cross-sectional TEM), (b) (0002) and (10-12) scan, (c) (0002) reciprocal space map, and (d) HR-
TEM of AlGaN/GaN heterostructure on FS-GaN substrate. Ulra-low FWHM of (0002) and (10-12) peaks indicates low dislocation 
density or high quality of AlGaN/GaN heterostructure on FS-GaN substrate. 

Fig.2. Rsh mapping on 2 
inch FS-GaN substrate. 

Fig.3. (a) PL spectra and (b) CL image of  
AlGaN/GaN  on FS-GaN substrate. AFM image 
(c) before and (d) after AlGaN/GaN epi.  

Fig.4. (a) standard HEMTs fabrication process, 
cross-sectional TEM of (b) HEMTs devices, 
and (c) Ni/Au/AlGaN/GaN gate stack. 

Fig.5. (a) ID-VG with ideal SS, and inset shows the image of the fabricated 
devices, (b) hysteresis ID-VG, and (c) ID-VD curve of AlGaN/GaN HEMTs. 

Fig.6. IG-VD curve of 
AlGaN/GaN HEMTs. 
 

Fig.7. SS as a function of IG 
of AlGaN/GaN HEMTs. 
 

Fig.8. Ion/Ioff ratio vs IG 
of AlGaN/GaN HEMTs 
on FS-GaN substrate. 

Fig.10. μeff vs Ns  of 
AlGaN/GaN HEMTs on 
FS-GaN. Inset shows C-
V plot at 1 MHz. 

Fig.9. ID-VG plots under 
T from 300 K to 420 K. 

Fig.9. Ln(JG) vs 1/Eox 
under T from 300 K to 
420 K. 

Fig.11. Benchmarking of 
SS for GaN-on-GaN 
HEMTs (this work) and  
oxide passivated GaN-
on-Si (or Al2O3) HEMTs.  
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