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Abstract — We systematically investigated threshold
voltages of Al,O3/AlGaN/GaN and AITiO/AlGaN/
GalN metal-insulator-semiconductor devices, where
Al>,0O3 and AITiO insulators are obtained by atomic
layer deposition. Analyzing the insulator thickness de-
pendence of the threshold voltages, we obtained pos-
itive insulator-semiconductor interface fixed charges,
whose density is lower for AITiO/AlGaN/GaN than

for Al;O3/AlGaN/GaN.

1 Introduction

GaN-based metal-insulator-semiconductor (MIS) de-
vices have been extensively developed owing to the mer-
its of gate leakage reduction and passivation effects. As
a gate insulator, high-dielectric-constant (high-k) materi-
als, such as Al,O3 [1], HfO2 [2], TiOz [3], AIN [4], BN
[5], TaON [6], and AlITiO [7], were employed. AlTiO, an
alloy of TiOy and Al;Og, is useful to balance the dielec-
tric constant k and the bandgap FEg, with intermediate
properties between TiOy (k ~ 60, Ey ~ 3 ¢V) and AlyO3
(k~9, Eg ~7eV) [8. When an insulator is formed on
AlGaN with a negative polarization charge, in many cases,
a positive interface fixed charge occurs to almost cancel
the polarization charge [9, 10], although the physical ori-
gin of the interface fixed charge is not fully elucidated.
The interface fixed charge affects device characteristics,
in particular, the threshold voltage. In this work, we
fabricated and characterized AloO3/AlGaN/GaN and Al-
TiO/AlGaN/GaN MIS devices, where Al,O3 and AlTiO
insulators are obtained by atomic layer deposition (ALD).
From a systematic investigation of threshold voltages of
the MIS devices, we evaluated insulator-semiconductor in-
terface fixed charges.

2 Device fabrication

Using an Alp27Gag 7sN(30 nm)/GaN(3000 nm) het-
erostructure obtained by metal-organic vapor phase epi-
taxy on sapphire(0001), we fabricated AlyOs/AlGaN/
GaN and AITiO/AlGaN/GaN MIS devices shown in
Fig. 1. On the heterostructure, Ti/Al/Ti/Au Ohmic elec-
trodes were formed. The Al,O3 gate insulator (k ~ 9,
E, ~ 6.8 eV) was deposited on the AlGaN surface by ALD
using trimethylaluminum (TMA) and H2O as precursors,
followed by post-deposition annealing in Ho-mixed Ar at
350 °C. Also we deposited the Al,Ti,O gate insulator
(x 1y =073:027, k ~ 15, E; ~ 6.0 eV) by ALD
using TMA, tetrakis-dimethylamino titanium (TDMAT),
and H»O, followed by the same post-deposition annealing.
Ni/Au gate electrodes were formed on the gate insulator,
completing the device fabrication.

3 Device characterization

We measured capacitance-voltage characteristics of the
MIS devices with several insulator thicknesses di,s. Fig-
ure 2 shows the capacitance C' between the gate electrode

and the grounded Ohmic electrode, and the sheet elec-
tron concentration ng calculated by integration of C, as
functions of the gate voltage V5. The measurements were
carried out at 1 MHz and under a voltage sweep Vg =0 —
—12 V. The measured capacitance Cy at Vg = 0 should be
given by 1/Cy = dins/(kins€0) + daican/(kaicaneo) (with
obvious notations). From the dj,s dependence of Cy, we
obtain kajgan = 9.3, and also kj,s = 9.2 and 15.4 for
Al;O3 and AlITiO, respectively. From the ng-Vg relation
in Fig. 2, threshold voltages V4, as functions of di,s are de-
termined as shown in Fig. 3, where we can confirm linear
dependences. Figure 4 shows the schematic band diagram
of the MIS devices, from which we obtain
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where Ao'ins = Oins—0ganN and AO—A]G&N = OAlGaN —0GaN,
with the insulator-semiconductor interface fixed charge
density oy,s, the polarization charges oajgan for AlGaN
and og,n for GaN, and ¥, = ¢ — ¢ — AFE¢ defined in
Fig. 4. By fitting the di,s dependence of V4, using Eq. (1),
we obtain Acins/q = 1.5x 10 ecm™2 and 1.1 x 10'3 cm 2
for Al,O3/AlGaN/GaN and AlTiO/AlGaN/GaN, respec-
tively, as shown in Table I. Assuming ogan/q = 2.1 x
1013 em™2 and oajgan/q = 3.4 x 10'® ecm~2, we also
estimated oy, and ¥y, = ¢ — ¢ — AE¢ given in Table
I. We find a lower oy,s for AITiO/AlGaN/GaN than for

From the above results, we can estimate the band di-
agrams of the MIS devices by Poisson-Schrodinger calcu-
lation as shown in Fig. 5. It should be noted that, for
AITiO/AlGaN/GaN MIS devices, the AITiO/AlGaN in-
terface is negatively charged owing to the lower oj,s. As
a result, the electric field in AITiO almost vanishes, while
that in Al;Og is rather high. For AlTiO/AlGaN/GaN
MIS devices, this fact and the high dielectric constant
lead to shallow threshold voltages in comparison with
Al;0O3/AlGaN/GaN.

4 Summary

We fabricated and investigated AlyOs/AlGaN/GaN
and AlTiO/AlGaN/GaN MIS devices with Al;O3 and
AITiO gate insulators deposited by ALD. From the
insulator thickness dependence of threshold voltages,
we obtained the insulator-semiconductor interface fixed
charges, whose density is lower for AlTiO/AlGaN/GaN
than for Al,O3/AlGaN/GaN. This fact and the high di-
electric constant lead to shallow threshold voltages for
AITiO/AlGaN/GaN MIS devices.
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Fig. 1: The schematic cross sections of Al,O3/AlGaN/GaN
and AITiO/AlGaN/GaN MIS devices.
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Fig. 2: The capacitance C and the sheet electron concentration
ns as functions of the gate voltage V. The measurements were
carried out at 1 MHz and under a voltage sweep Vg = 0 —
—12 V.
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Fig. 3: The threshold voltage Vi1 as functions of the insulator
thickness dins.
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Fig. 4: The schematic band diagram of the MIS devices.

Table I: Acins, Oins, and ¢¥m = ¢ — ¢ — AFEc for (a)
Al;03/AlGaN/GaN and (b) AlTiO/AlGaN/GaN MIS de-

vices.

Adins/q [em™?] | ins/q [cm™] | ¢ [eV]
(a) 1.5 x 103 3.6 x 1013 2.0
(b) 1.1 x 1013 3.2 x 1013 0.7
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Fig. 5: The band diagrams of the MIS devices, obtained by
Poisson-Schrédinger calculation.
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