Drain-induced barrier lowering in normally-off AlGaN-GaN MOSFETs with single- or double-recess overlapped gate

T. Sato^{1*}, K. Uryu¹, J. Okayasu¹, M. Kimishima¹, and T. Suzuki²

¹Advantest Laboratories Ltd.,

48-2 Matsubara, Kami-Ayashi, Aoba-ku, Sendai, Miyagi 989-3124, Japan

*E-mail: taku.sato@advantest.com

²Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology (JAIST) 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

Abstract – We investigated drain-induced barrier lowering (DIBL) in normally-off AlGaN-GaN metaloxide-semiconductor field-effect transistors (MOS-FETs) with a single- or a double-recess overlapped gate structure, in comparison with a conventional recess gate structure. The recess overlapped gate structures can suppress DIBL, where the double-recess is more advantageous for the DIBL suppression.

1 Introduction

AlGaN-GaN field-effect transistors (FETs) are attractive for use in high-power and high-frequency applications. While standard AlGaN-GaN FETs are normallyon devices, normally-off devices are highly desirable for switching applications. Several approaches have been reported for the normally-off operation [1-5]. Among them, AlGaN-GaN MOSFETs fabricated by deep gate recess etching through to the GaN channel [4] provide an excellent threshold voltage manufacturing stability. However, for short gate lengths and high drain voltages, the recess gate AlGaN-GaN MOSFETs often suffer from negative threshold voltage shifts owing to drain-induced barrier lowering (DIBL). In this work, we investigated DIBL in normally-off AlGaN-GaN MOSFETs with a single- or a double-recess overlapped gate structure, in comparison with a conventional recess gate structure.

2 Device fabrication

Figure 1 shows schematic cross sections of fabricated AlGaN-GaN MOSFETs with (a) a conventional recess gate structure as a reference (Ref.), (b) a singlerecess overlapped gate structure (SRO) [5], and (c) a double-recess overlapped gate structure (DRO). For an n- ${\rm GaN(5~nm)/Al_{0.2}Ga_{0.8}(22~nm)/GaN(2~\mu m)}$ heterostructure grown by metal-organic chemical vapor deposition, device isolation was achieved by ion implantation. Ohmic recess with ~ 10 nm depth was carried out by conventional dry etching using BCl_3/Cl_2 mixture gas. We also carried out gate recess as follows. For Ref. and SRO, as shown in Fig. 1 (a) and (b), a deep recess region (40 nm depth, 150 nm length) is formed. On the other hand, as shown in Fig. 1 (c), DRO has a shallow recess region (20 nm depth, 1.5 μ m length) in addition to the deep recess region. As a gate dielectric, a 20-nm-thick Al₂O₃ film was deposited by atomic layer deposition using trimethylaluminum and oxygen plasma. Aluminum-based ohmic electrodes were formed on the ohmic recess region after Al_2O_3 film removal. Ni gate electrodes were formed on the Al_2O_3 gate insulator, as shown in Fig. 1 (a), (b), and (c).

Fig. 1: Schematic cross sections of fabricated AlGaN-GaN MOSFETs with (a) Ref., (b) SRO, and (c) DRO.

3 Device characteristics

Figure 2 shows drain characteristics (drain current $I_{\rm D}$ vs. drain-source voltage V_{DS}) of AlGaN-GaN MOSFETs with (a) Ref., (b) SRO, and (c) DRO. On-resistances for Ref., SRO, and DRO are low, 3.3, 3.5, and 3.7 Ω mm, respectively. In addition, DRO exhibits low knee voltages and good $I_{\rm D}$ saturation in comparison with Ref. and SRO. Logarithmic-scale gate characteristics (drain current $I_{\rm D}$ vs. gate-source voltage $V_{\rm GS}$) at $V_{\rm DS} = 15$ V are shown in Fig. 3. We find that Ref. exhibits very poor sub-threshold characteristics, and also SRO exhibits poor one, both owing to DIBL. In contrast, for DRO, excellent sub-threshold characteristics is observed, indicating suppressed DIBL. Figure 4 shows linear-scale gate characteristics at $V_{\rm DS} = 1, 5, 10$, and 15 V. Owing to DIBL, we observe negative threshold voltage shifts for Ref. and SRO, where the former exhibits more significant shifts. In contrast, for DRO, DIBL is suppressed; almost no shifts are observed. Figure 5 shows threshold voltages $V_{\rm TH}$ depending on $V_{\rm DS}$ for (a) Ref., (b) SRO, and (c) DRO. Significant DIBL for Ref. is confirmed in the range of $V_{\rm DS} = 1-15$ V. We also find that DIBL occurs for SRO in the range of $V_{\rm DS} = 1-7$ V, but is suppressed in the range of $V_{\rm DS} > 7$ V. On the other hand, we can confirm no DIBL for DRO in the range of $V_{\rm DS} = 1-15$ V. This implies that, both SRO and DRO can suppress DIBL, where DRO is more effective.

Fig. 2: Drain characteristics (I_D-V_{DS}) for (a) Ref., (b) SRO, and (c) DRO.

In order to elucidate the above results, we consider the potential $V_{\rm X}$ at the connection point between the local FET1 and FET2 in the DRO MOSFET shown in Fig. 6 (a), where FET1 with a local threshold voltage $V_{\rm TH1}$ corresponds to the deep recess gate region, and FET2 with a local V_{TH2} to the shallow recess overlapped gate region. Since $V_{\text{TH1}} > V_{\text{TH2}}$, the threshold voltage of the DRO MOSFET is dominated by FET1, $V_{\rm TH} \sim V_{\rm TH1}$. Let us consider the sub-threshold regime $V_{\rm GS} \sim V_{\rm TH} \sim$ V_{TH1} , where FET1 is in the sub-threshold regime. For a high $V_{\rm DS}$, due to current continuity, FET2 also must be in the sub-threshold regime $V_{\rm GS} - V_{\rm X} \sim V_{\rm TH1} - V_{\rm X} \sim V_{\rm TH2}$; thus $V_{\rm X}$ is clamped at ~ $V_{\rm TH1} - V_{\rm TH2}$. On the other hand, for a low $V_{\rm DS} < V_{\rm TH1} - V_{\rm TH2}$, since the FET2 cannot be in the sub-threshold regime, the effective drain voltage of the FET2, $V_{\rm DS} - V_{\rm X}$, should almost vanish due to current continuity; thus $V_{\rm X} \sim V_{\rm DS}$. For the SRO MOSFET, we can also consider the local FET1 and FET2 in the same way, where FET2 corresponds to the overlapped gate region without recess. As a result, V_X depends on V_{DS} as shown in Fig. 6 (b) for both DRO and SRO. For $V_{\rm DS}$ higher than the threshold voltage difference $V_{\text{TH1}} - V_{\text{TH2}}$, $V_{\rm X}$ clamped at ~ $V_{\rm TH1} - V_{\rm TH2}$ makes FET1 immune to DIBL, leading to the DIBL suppression in the DRO and SRO MOSFETs. We estimated the threshold voltage difference $V_{\text{TH1}} - V_{\text{TH2}} \sim 1 \text{ V}$ and $\sim 7 \text{ V}$ for DRO and SRO, respectively, being consistent with the DIBL behavior in Fig. 5; DRO and SRO can suppress DIBL, where the former is more advantageous.

4 Summary

We investigated DIBL in normally-off AlGaN-GaN MOSFETs with a single- or a double-recess overlapped gate, in comparison with a conventional recess gate. The recess overlapped gates can suppress DIBL, where the double-recess is more advantageous for the DIBL suppression. This is a consequence of a small threshold voltage difference between two local FETs corresponding to the deep recess gate and the shallow recess overlapped gate.

References

- M. A. Khan, Q. Chen, C. Sun, J. Yang, M. Blasingame, M. Shur, and H. Park, Appl. Phys. Lett. 68, 514 (1996).
- [2] X. Hu, G. Simin, J. Yang, M. A. Khan, R. Gaska, and M. Shur, Electron. Lett. 36, 753 (2000).
- [3] Y. Cai, Y. Zhou, K. J. Chen, and K. M. Lau, IEEE Electron Device Lett. 26, 435 (2005).

- [4] T. Oka and T. Nozawa, IEEE Electron Device Lett. 29, 668 (2008).
- [5] B. Lu, O. I. Saadat, and T. Palacios, IEEE Electron Device Lett. 31, 990 (2010).

Fig. 3: Logarithmic-scale gate characteristics $(I_{\rm D}$ - $V_{\rm GS})$ for (a) Ref., (b) SRO, and (c) DRO, at $V_{\rm DS} = 15$ V and under a voltage sweep of $V_{\rm GS} = +4 \rightarrow -3$ V. $I_{\rm G}$: gate current, $g_{\rm m}$: transconductance.

Fig. 4: Linear-scale gate characteristics ($I_{\rm D}$ - $V_{\rm GS}$) for (a) Ref., (b) SRO, and (c) DRO, at $V_{\rm DS} = 1, 5, 10$, and 15 V, and under a voltage sweep of $V_{\rm GS} = +4 \rightarrow -3$ V.

Fig. 5: $V_{\rm TH}$ depending on $V_{\rm DS}$ for (a) Ref., (b) SRO, and (c) DRO.

Fig. 6: (a) Schematic cross section of the DRO MOSFET with the local FET1 and FET2. (b) $V_{\rm X}$ and $V_{\rm DS} - V_{\rm X}$ in the sub-threshold regime, as functions of $V_{\rm DS}$.