Demonstration of Reduction in V_{ce(sat)} of IGBT based on a 3D Scaling Principle

K. Kakushima¹, T. Hoshii¹, K. Tsutsui¹, A. Nakajima², S. Nishizawa³, H. Wakabayashi¹, I. Muneta¹, K. Sato⁴, T. Matsudai⁵, W. Saito⁵, T. Saraya⁶, K. Itou⁶, M. Fukui⁶, S. Suzuki⁶, M. Kobayashi⁶,

T. Takakura⁶, T. Hiramoto⁶, A. Ogura⁷, Y. Numasawa⁷, I. Omura⁸, H. Ohashi¹, H. Iwai¹

¹ Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

Phone: +81-45-924-5847 E-mail: kakushima.k.aa@m.titech.ac.jp

² National Institute of Advanced Industrial Science and Technology, ³Kyushu University, ⁴Mitsubishi Electric Corporation,

⁵Toshiba Electronic Devices & Storage Corporation, ⁶The University of Tokyo,

⁷Meiji University, ⁸Kyushu Institute of Technology

Abstract

A three-dimensional scaling principle for the collector-emitter saturation voltage, $V_{ce(sat)}$, reduction in IGBTs has been proposed. A significant reduction in the $V_{ce(sat)}$ from 1.70 to 1.26 V has been experimentally confirmed by the 3D scaling from k=1 to k=3.

1. Introduction

Performance improvements in Si-based insulated gate bipolar transistors (IGBTs) are attractive for the implementation to large lower-price markets [1]. Lowering of the collector-emitter saturation voltage, $V_{ce(sat)}$, is an essential requirement to suppress the energy loss for IGBTs. To meet the requirement, a structural design based on injection enhancement (IE) to increase the electron injection as well as hole injection and accumulation in the n-base region has been utilized so far [2-4]. A recent simulation study based on 2D scaling in trench gate IGBT shows significant $V_{ce(sat)}$ reduction by scaling the structures and the operation voltage as well [5]. The purpose of the presentation is to experimentally demonstrate the $V_{ce(sat)}$ reduction with a 3D scaling principle by fabricating IGBTs for both k=1 and 3 generations [6]. The 3D scaling scheme has been built to ease the fabrication processes and by adding a scaling concept along the perpendicular dimension to the cross-section to avoid latch-up free operations.

2. Proposal of a 3D Scaling Principal

The basic structure of a trench gate IGBT is shown in figure 1. As the concept of the scaling is based on enhancing the IE effect, the mesa width (S), the gate length (L_g) and the oxide thickness of the MOSFET (t_{ox}) were scaled by a factor of 1/k. A shorter cell pitch (W) results in the loss of the IE effect, and longer W leads to larger area decreasing the current density. Therefore, the W is kept to be 16 μ m from simulation study, as shown in figure 2. Although the IE effect may weaken to some extent, trench depth (D_T) is decreased by a factor of 1/k to avoid the narrow mesa problems [7] and to ease the manufacturability. Also, the trench width $(W_{\rm T})$ is scaled moderately with a factor of 2/k as the parameter basically does not affect the performance. Instead, wider trenches contribute to the reduction in parasitic resistances of gate electrodes. Scaling in the shallower p-base region may cause latch-up, therefore, length of emitter (L_{n+}) /body (L_{p+}) periodic

patterns were also scaled by a factor of 1/k. The scaling in operation voltage results in the reduction of switching energy by $1/k^2$, and the voltage has better compatibility with the integration of CMOS logic circuits. The feature sizes of the fabricated devices are listed in table I.

Figure 1 Structural parameters of a trench gate IGBT.

Figure 2 Simulation study shows optimum W for $V_{CE(sat)}$ reduction. A W of 16 μ m is adopted in this work.

Table I Feature sizes based on the 3D scaling principle.

Parameters in IGBT, symbols	<i>k</i> =1	<i>k</i> =3	Scaling factor
Cell pitch, W (µm)	16	16	1
Mesa width, S (μm)	3	1	1/k
Trench depth, <i>D</i> _T (μm)	6	2	1/k
Trench width, <i>W</i> _T (μm)	1.5	1.0	2/k
P-Base depth, D _P (µm)	3	1	1/k
N-Emitter depth, <i>D</i> _N (μm)	0.4	0.13	1/k
Gate oxide thickness, <i>t</i> _{ox} (nm)	100	33	1/k
Length of p ⁺ region, L _{p+} (µm)	4.5	1.5	1/k
Length of n ⁺ region, $L_{n^+}(\mu m)$	4.5	1.5	1/k
Gate voltage, V _g (V)	15	5	1/k

3. Device Characteristics

Emitter current densities on collector voltage (J_e - V_{ce}) as a function of V_g are shown in figure 3 and 4 for k=1 and 3, respectively. It is confirmed that the J_e slope in the low- V_{ce} linear region is much steeper for the k=3 case, suggesting the reduction in the on-resistance. Moreover, it was confirmed that $V_{ce(sat)}$ (defined at $J_e=200$ A/cm²) significantly reduced from 1.70 V (k=1) to 1.26 V (k=3), by the proposed scaling.

Figure 3 J_e - V_{ce} characteristics of an IGBT with k=1.

Figure 4 J_e - V_{ce} characteristics of an IGBT with k=3 based on the proposed scaling principal.

4. Conclusions

We have fabricated the 3D scaled IGBT with key size parameters 3 times smaller (k=3) than those of the current commercial products (k=1) by carefully designing the scaling scheme in which the tradeoff between performance and manufacturability is considered. It has been experimentally confirmed for the first time that significant $V_{ce(sat)}$ reduction is achieved by scaling the IGBT both in lateral and vertical dimensions with decreasing the gate voltage.

Acknowledgements

This work is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

References

- [1] B. J. Baliga, IEEE Electron Dev. Lett., 4, pp. 452-454 (1983).
- [2] H. Feng et al., Proc. ISPSD, pp.203-206 (2016).
- [3] K. Eikyu et al., Proc. ISPSD, pp.211-214. (2016).
- [4] H. Takahashi, et al., Proc. ISPSD, pp. 349-352 (1996).
- [5] M. Tanaka et al., Solid-State Electron, vol.80, pp.118-123 (2013).
- [6] K. Kakushima, et al., Tech. Dig. of IEDM pp. 268-271 (2016).
- [7] M. Sumitomo et al., Proc. ISPSD, pp.17-20 (2012).