# Accurate Evaluation of Fast Threshold Voltage Shift for SiC MOS Devices Under Various Gate Bias Stress Conditions

Mitsuru Sometani<sup>1</sup>, Mitsuo Okamoto<sup>1</sup>, Tetsuo Hatakeyama<sup>1</sup>, Yohei Iwahashi<sup>1</sup>, Mariko Hayashi<sup>1,2</sup>, Dai Okamoto<sup>3</sup>, Hiroshi Yano<sup>3</sup>, Shinsuke Harada<sup>1</sup>, Yoshiyuki Yonezawa<sup>1</sup>, and Hajime Okumura<sup>1</sup>

<sup>1</sup> National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8568, Japan

Phone: +81-29-861-8742 E-mail: m.sometani@aist.go.jp

<sup>2</sup> DENSO CORPORATION, 500-1, Minamiyama, Komenoki-cho, Nisshin, Aichi 470-0111, Japan

<sup>3</sup> University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

## Abstract

Fast measurement methods were introduced to accurately evaluate the threshold voltage ( $V_{th}$ ) shift under various gate bias stress conditions for SiC metal–oxide– semiconductor (MOS) devices. By suppressing the stress relaxation during measurements, large  $V_{th}$  shifts were observed compared with conventional methods. The effects of those fast  $V_{th}$  shifts on the drain current and  $V_{th}$ under the AC gate bias stress were examined.

## 1. Introduction

Silicon carbide (SiC) has attracted much interest for use in high-voltage and high-temperature power devices owing to its wide bandgap, high thermal conductivity, and high breakdown electric field [1]. However, low channel mobility and the threshold voltage  $(V_{\rm th})$  shift under positive and negative gate bias stresses due to the large number of interface and near-interface defects are major issues for SiC metal-oxidesemiconductor (MOS) field-effect transistors (FETs) [2]. A positive  $V_{\text{th}}$  shift reduces the drain current ( $I_{\text{d}}$ ) during the onstate, and a negative Vth shift stress causes unintentional turning on. Recently, we observed significantly large  $V_{\rm th}$  shifts under various gate bias stress conditions with fast measurement methods [3, 4]. Fast  $V_{\rm th}$  shifts should be a serious concern because their stress-time range and the on-state time of actual AC operation are very close. In this paper, we introduce methods to evaluate the fast  $V_{\rm th}$  shift under positive and negative DC gate bias stresses. The effects of these  $V_{\rm th}$  shifts on  $I_d$  and  $V_{th}$  during one pulse of an AC gate bias stress were investigated.

# 2. Vth shift under a positive DC gate bias stress

The  $V_{\text{th}}$  shift under a positive DC gate bias stress is generally measured by the sweep method [5, 6], where a drain current-gate voltage  $(I_d-V_g)$  curve is measured to determine  $V_{\text{th}}$  and a constant  $V_g$  is applied as the gate bias stress iteratively.  $I_d-V_g$  is measured from  $V_g = 0$  V to above  $V_{\text{th}}$ , which typically takes approximately 10 s. Measuring  $I_d-V_g$  may cause the  $V_{\text{th}}$  shift to be underestimated owing to stress relaxation by charge de-trapping. To estimate the  $V_{\text{th}}$  shift without relaxation, we proposed a non-relaxation (NonRlx) method [7], where a constant  $V_g$  is continuously applied as a gate bias stress and a drain-source voltage ( $V_{\text{ds}}$ ) is automatically adjusted to maintain a constant  $I_d$  by using standard source measure units (SMUs). Then, the measured  $V_{\text{ds}}$  is converted to the  $V_{\text{th}}$  as follows:

$$I_{\rm d} = \frac{W}{L} \,\mu C_{\rm ox} \left( V_{\rm g} - V_{\rm th} \right) V_{\rm ds} \tag{1}$$

where W is the gate width, L is the gate length,  $\mu$  is the channel mobility, and  $C_{\text{ox}}$  is the oxide capacitance. The product of W/L,  $\mu$ , and  $C_{\text{ox}}$  can be estimated from the slope of the  $I_{\text{d}}$ - $V_{\text{g}}$  characteristics at the gate-stress voltage.

Figure 1 compares the  $V_{\rm th}$  shifts measured by the sweep and NonRlx methods under a positive DC gate bias stress of +15 V. The oxide films of the MOSFETs were formed by thermal oxidation in dry O<sub>2</sub> followed by post-oxidation annealing (POA) in N<sub>2</sub>O ambient. The  $V_{\rm th}$  shift values measured by the NonRlx method were larger than those measured by the sweep method, especially in the extremely short stress-time region. For detailed investigation of the  $V_{\rm th}$  shift in the short stress-time region, we used the high-speed non-relaxation (HS NonRlx) method with high-speed SMUs [3].



Fig. 1 Comparison of the  $V_{\text{th}}$  shifts measured with the sweep and NonRlx methods under a positive DC gate bias stress [7].



Fig. 2 V<sub>th</sub> shift measured with the sweep, NonRlx, and HS NonRlx methods under a positive DC gate bias stress [3].

Figure 2 shows the  $V_{\text{th}}$  shifts measured by the sweep, NonRlx, and HS NonRlx methods. The oxide films of MOSFET were formed by thermal oxidation in dry O<sub>2</sub> followed by POA in NO ambient. An extremely large  $V_{\text{th}}$  shift was observed with the HS NonRlx method compared with the other methods. This result indicates that a large amount of charge trapping occurred in a short stress time.

# 3. Vth shift under a negative DC gate bias stress

Vth under a negative DC gate bias stress is also generally measured with a sweep method [8, 9]. However, owing to the positive  $V_{\rm g}$  bias in the  $I_{\rm d}$ - $V_{\rm g}$  measurement, the trapped holes induced by the negative gate bias stress recombined with the channel electrons, which results in a significant recovery of the  $V_{\rm th}$  shift. To avoid this recombination of trapped holes with channel electrons, the shift of the flat band voltage ( $V_{\rm FB}$ ) capacitance-voltage estimated from (C-V)was measurements in the negative gate bias region. The  $V_{\rm th}$  shift was then determined [10]. With this C-V method, a large  $V_g$ shift was observed compared with the sweep method. However,  $V_{\rm FB}$  measurement typically takes about 10 s with a conventional LCR meter. This is close to the measurement time of the sweep method. Thus, the  $V_{\rm th}$  shift should be underestimated, similar to measuring the  $V_{\rm th}$  shift under a positive gate bias stress with the sweep method. Therefore, we used the fast C-V method with a constant-capacitance deep-level transient spectroscopy (CC-DLTS) measurement system to measure the  $V_{\rm FB}$  within 10 ms [4]. Figure 3 compares the measured  $V_g$  shifts under a negative DC gate bias stress of -15 V with the sweep, C-V, and fast C-Vmethods. The  $V_{\rm g}$  shift was defined as equal to the  $V_{\rm th}$  and  $V_{\rm FB}$ shifts. The oxide films of MOS capacitors and MOSFETs were formed by thermal oxidation in dry O<sub>2</sub> followed by POA in NO ambient. An extremely large Vg shift was observed with the fast C-V method compared to the other methods. This means that fast measurement is indispensable for both positive and negative gate bias stresses to clarify the mechanisms of trapping during stress and de-trapping during Vth measurement.



Fig. 3  $V_g$  shift under a negative DC gate bias stress measured with the sweep, C-V, and fast C-V methods [4].

#### 4. Vth shift under an AC gate bias stress

Under an AC gate bias stress, charge trapping and de-trapping occur simultaneously. Thus, the long-term  $V_{\text{th}}$  shifts show complicated behavior dependent on the frequency and duty cycle [11]. In addition, the  $V_{\text{th}}$  should also shift within

one pulse short-term stress. Figure 4 shows the  $I_d$  and  $V_{th}$  shifts under an AC gate bias stress [3].  $I_d$  appeared immediately after the on-state gate voltage was applied. Then,  $I_d$  decreased rapidly over time during the on-state within one pulse. The  $V_{th}$  shift converted from the  $I_d$  shift is extremely large. This phenomenon was also observed in commercially available SiC MOS devices [12]. The effects of long-term and short-term  $V_{th}$  shifts on the reliability during actual operation are not clear. Thus, careful investigation is necessary to bring out the full potential of SiC MOS devices.



Fig. 4  $V_{th}$  shift under an AC gate bias stress measured with the HS NonRlx method [3].

# 5. Conclusions

The HS NonRlx method and fast C-V methods showed large  $V_{\text{th}}$  shifts in a short stress time under positive and negative DC gate bias stresses compared with conventional methods. The results indicate that suppressing stress relaxation is indispensable to avoid underestimation of the  $V_{\text{th}}$ shift. The effects of these fast  $V_{\text{th}}$  shifts on the  $I_d$  shift during the on-state of AC operation were also investigated. A large decrease in  $I_d$  over time during the on-state within one pulse was observed.

#### Acknowledgments

This work was supported by Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), "Next-generation power electronics" (funding agency: NEDO). We gratefully acknowledge A. Otsuki and M. Takei of Fuji Electric Co., Ltd. for the helpful discussions.

# References

- [1] T. Kimoto, Jpn. J. Appl. Phys. 54, 040103 (2014).
- [2] Y. Fujino et al., J Appl. Phys. 120, 085710 (2016).
- [3] M. Okamoto et al., Mater. Sci. Forum 897, 549 (2017).
- [4] M. Hayashi et al., submitted to SSDM2017.
- [5] A. J. Lelis *et al.*, IEEE Trans. Electron. Devices 55, 1835 (2008).
- [6] J. Senzaki et al., Mater. Sci. Forum 778-780, 521 (2014).
- [7] M. Sometani et al., Jpn. J. Appl. Phys. 55, 04ER11 (2016).
- [8] J. Rozen et al., J. Appl. Phys. 105, 124506 (2009).
- [9] M. Matsumura et al., Jpn. J. Appl. Phys. 54, 04DP12 (2015).
- [10] Y. Katsu et al., Mater. Sci. Forum 858. 599 (2016).
- [11] E. Murakami et al., Jpn. J. Appl. Phys. 56, 04CR11 (2017).
- [12] M. Sometani et al., Proc. of ISPSD'17, 395 (2017).