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Abstract 

An instruction fetch acceleration technique for 

MRAM-embedded nonvolatile VLSI processor is 

proposed. The proposed technique realizes efficient 

instruction fetch by eliminating redundant memory 

access by considering the code length of the instruction to 

be fetched and the transition of the memory address to be 

accessed. Through the evaluation using a general purpose 

32-bit microprocessor, it is demonstrated that the 

proposed technique increases the peak efficiency of the 

system up to 1.37 times, while achieves 4.6 times area 

reduction compared with cache-based one. 

1. Introduction 

Research and development for realizing a high 

performance / low power sensor node for IoT utilizing a 

nonvolatile memory element such as MTJ device [1] has been 

actively conducted in recent years. In order to realize high-

speed operation in sensor nodes where wide operating 

temperature is assumed, it is important to eliminate the 

bottleneck of memory access. Figure 1 shows a shmoo plot 

for read / write operations of an experimental embedded STT-

MRAM using 2T-2MTJ cell structure. Since the operating 

frequency of the MRAM designed using the advanced 

process is highly dependent on the temperature, raising the 

operating frequency will narrow the temperature 

guaranteeing the operation. 

One of the most popular ways to solve the memory 

bottleneck is the introduction of caches [2]. However, this 

leads to an increase in area and power consumption in circuit 

implementation. Additionally, it is necessary to make the 

cache itself nonvolatile in order to utilize the benefit of 

nonvolatile power gating. Another way is to introduce a 

memory interleaving [3]. However, since most of the 

microprocessors in recent years have a variable-length 

instruction set, regular memory access which is indispensable 

for effective interleaving is not performed in many cases. 

From these viewpoints, in this paper, we propose a 

technique for improving the processing speed in a 

microprocessor based on memory access multiplexing with a 

circuit technique that dynamically changes the frequency 

according to the code length of the executed instruction. 

2. Instruction Fetch Acceleration Technique 

Figure 2 shows a basic concept of the proposed technique. 

In this paper, we consider a system consisting a 

microprocessor based on ARM Cortex-M0 and an embedded 

STT-MRAM. This chip has an instruction set called Thumb-

2, which contains both 16-bit instructions and 32-bit 

instructions. A memory access is always performed using a 

32-bit bus (HADDR, HRDATA), and whether it is a 16-bit 

instruction or a 32-bit instruction is judged at the stage of 

instruction fetch. In the case of a 16-bit instruction, an 

instruction is executed using only either the upper 16 bits or 

the lower 16 bits of the 32-bit data received from the memory. 

In this case, half of the read data is wasted and redundant 

accesses will occur. 

In the proposed architecture in Figure 2, the read data is 

temporarily held in registers in the accelerator module (reg0, 

reg1), and when access to the same memory address is 

repeated, the data held in the register is reused instead of the 

memory. Furthermore, in the case of 32-bit instructions 

allocated at consecutive memory addresses, it is also possible 

to double the speed of memory access by storing data of two 

32-bit instructions into the registers by interleaving and 

applying the same control. As a result, it becomes possible to 

conceal the bottleneck in the memory access, and realize high 

speed instruction fetch. 

3. Evaluation 

Figure 3 shows a part of the test chip layout of an 

experimental nonvolatile VLSI Processor using a 40nm 

MOS/MTJ process, which is designed by using an automated 

design flow and cell libraries for the MTJ-based NV-LIM LSI 

[4, 5]. From the number of gates of each block, the area 

overhead due to introducing the proposed circuit is estimated 

to be about 15%, which achieves 4.6 times area reduction 

compared with a conventional implementation using cache. 

Note that each block is separately designed for overhead 

evaluation in this figure, however it is also possible to 

integrate these blocks and layout them as one circuit block. In 

that case the area overhead is expected to be even smaller. 

Figure 4 shows a simulated waveform of the proposed 

accelerator unit. In this example, (1) 16-bit instructions 

allocated at consecutive memory addresses, (2) branch 

instructions to access a memory address not consecutive, and  

(3) 32-bit instructions allocated at consecutive memory 

addresses are sequentially executed. We can confirm that the 

operating frequency is dynamically changed depending on 

whether or not the transition of the memory address to be 

accessed satisfies the condition of instruction fetch 

acceleration. 

Table I compares the performance of a microprocessor 

incorporating the proposed technique and that of the 

conventional ones. Although the power consumption 

increases due to the addition of the accelerator, the proposed 

technique can double the operating frequency of the CPU 

without changing the required performance to the memory. 

As a result, the efficiency (MIPS/mW) can be improved up to 

1.37 times while guaranteeing memory read / write operation 

over a wide temperature range. 

 4. Conclusion 

The proposed technique enables faster instruction fetch 
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without changing required performance for embedded 

nonvolatile memory by utilizing the properties of 

microprocessor. In the  future, we will show the 

effectiveness of the proposed technique through the 

performance evaluation of the entire VLSI system including 

MRAM, other peripherals, and interconnect bus among them. 
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Fig. 1 Shmoo plot of an embedded MRAM. 
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Fig. 2 Proposed architecture: (a) circuit architecture, (b) example data 

transition on a read operation of consecutive 16-bit instructions. 
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Fig. 3 Chip layout. 

Table I Performance comparison. 

Fig. 4 Simulated waveform. 

HADDR

MRAM_ADDR

MRAM0_DATA

MRAM1_DATA

CLK

MRAM_CLK

HRDATA

32-bit instructions
@100MHz

32-bit instructions
@50MHz

Memory address
is increased by +4

Memory address
is randomly changed

16-bit instructions 
@100MHz

Memory address
is increased by +2

Conventional
Proposed

w/o cache w/ cache*

Area ratio 1.00 7.08 1.54

Voltage [V] 1.1 1.1 1.1

Frequency [MHz] 50 50/100 50/100

Peak perf. [MIPS] 49.56 99.12 99.12

Power [mW] 0.334 0.571 0.487

Peak efficiency ratio 1.00 1.17 1.37

*Area and power of cache are estimated based on [6]
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