
Energy-Efficient High-Performance Nonvolatile VLSI Processor

with a Temporary-Data Reuse Technique
Masanori Natsui and Takahiro Hanyu

Tohoku University

2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JAPAN, Phone: +81-22-217-5552, E-mail: natsui@riec.tohoku.ac.jp

Abstract

An instruction fetch acceleration technique for

MRAM-embedded nonvolatile VLSI processor is

proposed. The proposed technique realizes efficient

instruction fetch by eliminating redundant memory

access by considering the code length of the instruction to

be fetched and the transition of the memory address to be

accessed. Through the evaluation using a general purpose

32-bit microprocessor, it is demonstrated that the

proposed technique increases the peak efficiency of the

system up to 1.37 times, while achieves 4.6 times area

reduction compared with cache-based one.

1. Introduction

Research and development for realizing a high

performance / low power sensor node for IoT utilizing a

nonvolatile memory element such as MTJ device [1] has been

actively conducted in recent years. In order to realize high-

speed operation in sensor nodes where wide operating

temperature is assumed, it is important to eliminate the

bottleneck of memory access. Figure 1 shows a shmoo plot

for read / write operations of an experimental embedded STT-

MRAM using 2T-2MTJ cell structure. Since the operating

frequency of the MRAM designed using the advanced

process is highly dependent on the temperature, raising the

operating frequency will narrow the temperature

guaranteeing the operation.

One of the most popular ways to solve the memory

bottleneck is the introduction of caches [2]. However, this

leads to an increase in area and power consumption in circuit

implementation. Additionally, it is necessary to make the

cache itself nonvolatile in order to utilize the benefit of

nonvolatile power gating. Another way is to introduce a

memory interleaving [3]. However, since most of the

microprocessors in recent years have a variable-length

instruction set, regular memory access which is indispensable

for effective interleaving is not performed in many cases.

From these viewpoints, in this paper, we propose a

technique for improving the processing speed in a

microprocessor based on memory access multiplexing with a

circuit technique that dynamically changes the frequency

according to the code length of the executed instruction.

2. Instruction Fetch Acceleration Technique

Figure 2 shows a basic concept of the proposed technique.

In this paper, we consider a system consisting a

microprocessor based on ARM Cortex-M0 and an embedded

STT-MRAM. This chip has an instruction set called Thumb-

2, which contains both 16-bit instructions and 32-bit

instructions. A memory access is always performed using a

32-bit bus (HADDR, HRDATA), and whether it is a 16-bit

instruction or a 32-bit instruction is judged at the stage of

instruction fetch. In the case of a 16-bit instruction, an

instruction is executed using only either the upper 16 bits or

the lower 16 bits of the 32-bit data received from the memory.

In this case, half of the read data is wasted and redundant

accesses will occur.

In the proposed architecture in Figure 2, the read data is

temporarily held in registers in the accelerator module (reg0,

reg1), and when access to the same memory address is

repeated, the data held in the register is reused instead of the

memory. Furthermore, in the case of 32-bit instructions

allocated at consecutive memory addresses, it is also possible

to double the speed of memory access by storing data of two

32-bit instructions into the registers by interleaving and

applying the same control. As a result, it becomes possible to

conceal the bottleneck in the memory access, and realize high

speed instruction fetch.

3. Evaluation

Figure 3 shows a part of the test chip layout of an

experimental nonvolatile VLSI Processor using a 40nm

MOS/MTJ process, which is designed by using an automated

design flow and cell libraries for the MTJ-based NV-LIM LSI

[4, 5]. From the number of gates of each block, the area

overhead due to introducing the proposed circuit is estimated

to be about 15%, which achieves 4.6 times area reduction

compared with a conventional implementation using cache.

Note that each block is separately designed for overhead

evaluation in this figure, however it is also possible to

integrate these blocks and layout them as one circuit block. In

that case the area overhead is expected to be even smaller.

Figure 4 shows a simulated waveform of the proposed

accelerator unit. In this example, (1) 16-bit instructions

allocated at consecutive memory addresses, (2) branch

instructions to access a memory address not consecutive, and

(3) 32-bit instructions allocated at consecutive memory

addresses are sequentially executed. We can confirm that the

operating frequency is dynamically changed depending on

whether or not the transition of the memory address to be

accessed satisfies the condition of instruction fetch

acceleration.

Table I compares the performance of a microprocessor

incorporating the proposed technique and that of the

conventional ones. Although the power consumption

increases due to the addition of the accelerator, the proposed

technique can double the operating frequency of the CPU

without changing the required performance to the memory.

As a result, the efficiency (MIPS/mW) can be improved up to

1.37 times while guaranteeing memory read / write operation

over a wide temperature range.

 4. Conclusion

The proposed technique enables faster instruction fetch

 PS-12-05
Extended Abstracts of the 2017 International Conference on Solid State Devices and Materials, Sendai, 2017, pp977-978

- 977 -

without changing required performance for embedded

nonvolatile memory by utilizing the properties of

microprocessor. In the future, we will show the

effectiveness of the proposed technique through the

performance evaluation of the entire VLSI system including

MRAM, other peripherals, and interconnect bus among them.

Acknowledgements
 The authors thank Y. Takako of Focal Agency for excellent tech-
nical assistance. Part of this research was supported by the JSPS Im-
PACT Program, R&D for Next-Generation IT of MEXT of Japan,
and JSPS KAKENHI Grant Number 16KT0187.

References
[1] S. Ikeda, et al., Nat. Mater. 9, 721 (2010).
[2] A. J. Smith, ACM Computing Surveys 14(3), 473 (1982).
[3] K. Hwang et al., McGraw-Hill (1984).

[4] M. Natsui, et al., 2013 IEEE ISSCC, 194 (2013).

[5] M. Natsui, et al., IEEE JSSC 50, 476 (2015).
[6] T. Fukuda, et al., 2014 IEEE ISSCC, 236 (2014).

Fig. 1 Shmoo plot of an embedded MRAM.

80

60

40

20

0

-20
0 20 40 60 80 100 120 140

Pass Write failRead fail Read & write fail

Te
m

p
er

at
u

re
[°

C
]

Frequency [MHz]

Fig. 2 Proposed architecture: (a) circuit architecture, (b) example data

transition on a read operation of consecutive 16-bit instructions.

HADDR

MRAM_ADDR

MRAM0_DATA

MRAM1_DATA

HRDATA
100MHz

CLK 200MHz

MRAM_CLK
50MHz

00

00 04 06 08 0A 0C 0E 1002

01 02

D04,D05 D0C,D0D

D06,D07 D0E,D0F

D14,D15

D16,D17

D00,D01 D08,D09 D10,D11

D02,D03 D0A,D0B D12,D13

D00,D01 D04,D05 D08,D09 D0C,D0D

D02,D03 D06,D07 D0A,D0B D0E,D0F

D00,D01 D04,D05 D08,D09 D0C,D0D

D02,D03 D06,D07 D0A,D0B D0E,D0F

01 02

D0C,D0D

D0E,D0F

D14,D15

D16,D17

D08,D09 D10,D11

D0A,D0B D12,D13

reg0

reg1
D04,D05 D0C,D0D

D06,D07 D0E,D0F

D00,D01 D08,D09 D10,D11

D02,D03 D0A,D0B D12,D13

D08,D09

D0A,D0B

D0C,D0D

D0E,D0F

D14,D15

D16,D17

reg11
D04,D05 D0C,D0D

D06,D07 D0E,D0F

reg cmp

reg0

reg11

Pre-fetch
address generator

Output control

MUX

MUX
reg1

MRAM1_DATA
(50MHz)

MRAM_ADDR(5
0MHz)

MRAM_ADDR
(50MHz)

MRAM0_DATA
(50MHz)

HRDATA
(100MHz)

MRAM1

MRAM0

D04,D05

D0C,D0D

D06,D07

D0E,D0F

D14,D15 D16,D17

D1C,D1D

D00,D01

D08,D09

D10,D11

D02,D03

D0A,D0B

D12,D13

D18,D09 D1A,D1B

D1E,D1F

MRAM
_ADDR

00

01

02

03

HADDR
(100MHz)

CPU
MRAM
_ADDR

00

01

02

03

A
cc

er
el

at
o

r

32bit

(a)

(b)

Gate count
(Normalized)

CPU 32316 (1.000)

Accelerator 4991 (0.154)

235um

2
3

5
u

m

1
4

2
u

m

142um

AcceleratorCPU

Fig. 3 Chip layout.

Table I Performance comparison.

Fig. 4 Simulated waveform.

HADDR

MRAM_ADDR

MRAM0_DATA

MRAM1_DATA

CLK

MRAM_CLK

HRDATA

32-bit instructions
@100MHz

32-bit instructions
@50MHz

Memory address
is increased by +4

Memory address
is randomly changed

16-bit instructions
@100MHz

Memory address
is increased by +2

Conventional
Proposed

w/o cache w/ cache*

Area ratio 1.00 7.08 1.54

Voltage [V] 1.1 1.1 1.1

Frequency [MHz] 50 50/100 50/100

Peak perf. [MIPS] 49.56 99.12 99.12

Power [mW] 0.334 0.571 0.487

Peak efficiency ratio 1.00 1.17 1.37

*Area and power of cache are estimated based on [6]

- 978 -

