Nearly ideal spin tunneling efficiency by lowering the trap density at an amorphous-MgO / n^+ -Si(001) interface with a SiO_x insertion layer

Mitsuki Ichihara¹, Shoichi Sato¹, Masaaki Tanaka^{1,2}, and Ryosho Nanake^{1,3}

¹Department of Electrical Engineering and Information Systems, The University of Tokyo,

²Center for Spintronics Research Network (CSRN), The University of Tokyo,

³Institute for Innovation in International Engineering Education, The University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Phone: +81-3-5841-6729 Email: ichihara@cryst.t.u-tokyo.ac.jp

Abstract

We achieved nearly ideal spin tunneling efficiency η by lowering the interface trap density D_{it} with a SiO_x layer in Fe / Mg / amorphous-MgO(1.0 - 1.5 nm) / plasma-oxidized SiO_x(~0.2 nm) / n^+ -Si(001) junctions. We estimated the tunneling electron spin polarization P_S in Si by narrower three-terminal Hanle signals measured at 4 K. At the optimum MgO thickness and oxidation time, $P_S = 41\%$ which is nearly equal to the spin polarization P_{FM} (= 44%) of Fe at the Fermi level, and $\eta = P_S/P_{FM} =$ 0.93. By quantitatively estimating D_{it} and P_S of various junctions, we show that lowering D_{it} is crucial to obtain $\eta \approx 1$.

1. Introduction

To realize Si-based spin-functional devices with a high magneto-current ratio, spin injection/extraction into/from Si through a ferromagnetic metal(FM)/MgO/Si tunnel junction has been extensively studied [1-3]. For such devices, highly-efficient spin injection/extraction is required and it can be measured by spin tunneling efficiency $\eta = P_{\rm S}/P_{\rm FM}$, where $P_{\rm S}$ is tunneling electron spin polarization in Si and $P_{\rm FM}$ is the spin polarization of FM at the Fermi level. Although $\eta = 1$ is ideal, the η values reported so far were significantly smaller than 1; $\eta = 0.17$ at 8 – 300 K in a Fe/MgO/ n^+ -Si junction [1] and $\eta = 0.41$ at 300 K in a Co₂FeSi/MgO/Si junction [2]. In our previous paper, we found that the spin polarization of electrons passing through a ferromagnetic tunnel junction is reduced by a magnetically-dead layer formed at the FM/MgO interface, and demonstrated that an ultra-thin Mg insertion layer effectively suppresses the magnetic degradation [3]. In such junctions, we obtained $\eta = 0.41$ at 4 K, but it is not high enough. On the other hand, since electron trap states at the MgO/Si interface can be spin flip centers, η is possibly improved by lowering the interface trap density D_{it} , although it has not been demonstrated ever. In this study, we show that nearly ideal $\eta = 0.93$ is achieved in a Fe/Mg/MgO/Si junction by lowering D_{it} with a plasma oxidation of the MgO/Si structure during the junction formation.

2. Device preparation

The sample preparation was as follows: After thermal cleaning of a H-terminated Si(001) substrate in an ultra-high

vacuum, a MgO layer with the thickness $d_{MgO} = 1.0, 1.2,$ and 1.5 nm was deposited at room temperature by electron beam (EB) evaporation. Subsequently, the MgO/Si structure was oxidized at room temperature by a RF plasma source for oxidation time $t_{ox} = 1$ and 3 min, during which an ultrathin SiO_x layer was formed between MgO and Si. A non-oxidized MgO/Si structure was also prepared, and it is denoted by $t_{ox} = 0$ min. On this surface, three types of structure were prepared at room temperature: (from top to bottom) (1)For three-terminal Hanle measurements, an Al(10 nm)/Mg (1 nm)/Fe (3 nm)/Mg (1 nm) was deposited on a MgO($d_{MgO} = 1.0, 1.2, \text{ and } 1.5 \text{ nm}$) layer by molecular beam epitaxy (MBE), (2)For C-V measurements and the conductance method with MOS capacitors[4], an Al(10 nm)/MgO (4 nm) was deposited on a MgO($d_{MgO} = 1.2$ nm) layer by EB evaporation and MBE, and (3)For X-ray photoelectron spectroscopy (XPS) measurements, a 3-nm-thick Al was deposited on a MgO($d_{MgO} = 1.0$ nm) layer by MBE. After exposure to air, the fabrication process of the top and bottom electrodes for (1) and (2) was the same as that in the previous paper [3]. Phosphorus-doped Si(001) substrates with ~1 m Ω cm and ~100 m Ω cm were used for (1)(3) and (2), respectively. The diameter of a circular pillar junction for (1) was 17.8 μm, whereas that for (2) was 178 μm. Figure 1 shows a three-terminal device structure with the junction structure (1) and the three-terminal Hanle measurement setup, in which the voltage change ΔV^{N} is measured with a constant negative current $I_{\rm B}$ (spin extraction geometry) driven from the top to the bottom electrodes while a perpendicular magnetic field is swept from -3 to 3 kOe.

Fig. 1 Schematic structure of a device with multi-layered magnetic junctions and the three-terminal Hanle measurement set up.

3. Characterization of SiO_x formation

From XPS spectra of Si 2*p* in Fig. 2(a), the sample with $d_{MgO} = 1.0$ nm and $t_{ox} = 0$ min does not have SiO_x, whereas

the sample with $d_{MgO} = 1.0$ nm and $t_{ox} = 1$ min has a SiO_x layer with $x \sim 2$. By the angle-resolved XPS spectrum of Si 2*p*, the thickness of SiO_x d_{SiOx} was estimated to be 0.26 nm. Figure 2(b) shows resistance-area product *RA* at zero bias of all the three-terminal samples, which were estimated from the *I-V* curves measured at 4 K. For the same d_{MgO} , *RA* increases exponentially with increasing t_{ox} , indicating that d_{SiOx} increases with increasing t_{ox} .

Fig. 2 (a) X-ray photoelectron spectroscopy (XPS) spectra of Si 2*p* measured, where black and blue curves are the spectra of the Al(3 nm)/MgO(1 nm)/Si ($t_{ox} = 0$ min) and Al(3 nm)/MgO(1 nm)/SiO_x/Si ($t_{ox} = 1$ min), respectively. (b) Resistance-area product (*RA*) at zero bias voltage of the junction plotted as a function of t_{ox} , which were estimated from *I-V* characteristics measured at 4 K. The open black circles, open green squares, and open orange triangles are the values for MgO thickness $d_{MgO} = 1.0, 1.2, \text{ and } 1.5$ nm, respectively.

4. Spin extraction experiments and estimation of η

Figure 3(a) shows Hanle signals ΔV^{N} of the devices with $d_{MgO} = 1.2$ nm measured at 4 K with $I_{B} = -30$ mA, where black, blue, and red curves are $t_{ox}= 0$, 1, and 3 min, respectively. We estimated the spin lifetime τ_{S} and P_{S} by fitting a theoretical curve [3], which is the light green curve superimposed on each signal. Whereas τ_{S} was almost the same among the devices, P_{S} was changed depending on t_{ox} . In the same manner, P_{S} in all the devices were estimated, and these are plotted as a function of t_{ox} in Fig. 3(b). Interestingly, as t_{ox} increases, P_{S} (and η) for the devices with $d_{MgO} = 1.2$ and 1.5 nm increase at first, show the maximum at $t_{ox} = 1$ min, and then slightly decrease. This behavior

Fig. 3 (a) Narrower three-terminal Hanle signals $\Delta V^{\rm N}$ of devices with $d_{\rm MgO} = 1.2$ nm measured at 4 K with $I_{\rm B} = -30$ mA, where black, blue, and red curves are $\Delta V^{\rm N}$ of the devices with $t_{\rm ox} = 0, 1$, and 3 min, respectively, and the light green curve superimposed on each $\Delta V^{\rm N}$ is the fitting curve with Eq. (2) in [3]. (b) Tunneling spin polarization $P_{\rm S}$ in Si and spin tunneling efficiency η plotted as a function of $t_{\rm ox}$, where each value was estimated from $\Delta V^{\rm N}$ measured at 4 K with $I_{\rm B} = -30$ mA. The open black circles, open green squares, and open orange triangles are the values for $d_{\rm MgO} =$ 1.0, 1.2, and 1.5 nm, respectively.

cannot be explained by the $RA - t_{ox}$ relation in Fig. 2(b), in which *RA* increases with increasing t_{ox} .

We also measured the $I_{\rm B}$ dependence of $P_{\rm S}$ of the device with $d_{\rm MgO} = 1.2$ nm and $t_{\rm ox} = 1$ min, and found that $P_{\rm S}$ increases with decreasing $I_{\rm B}$. At $I_{\rm B} = -15$ mA, we obtained the maximum value of $P_{\rm S} = 0.41$, which corresponds to $\eta = 0.93$.

5. Relation between Ps and interface trap density Dit

Figure 4 shows D_{it} estimated from the conductance method at room temperature, where $d_{MgO} = 1.2$ nm and black, blue, and red circles are $t_{ox} = 0$, 1, and 3 min, respectively. As t_{ox} increases from $t_{ox} = 0$ min, D_{it} in whole the energy range decreases at $t_{ox} = 1$ min, and then it slightly increases at $t_{ox} = 3$ min. This behavior is highly correlated with the t_{ox} dependence of P_S for $d_{MgO} = 1.2$ nm in Fig. 3(b); the device with lower D_{it} shows higher P_S . Thus, we concluded that the highest $P_S = 41\%$ ($\eta = 0.93$) in this study is achieved by lowering D_{it} at the insulator/Si interface.

Fig. 4 Interface trap density D_{it} in capacitors with $d_{MgO} = 1.2$ nm and $t_{ox} = 0, 1$, and 3 min plotted by electron energy E, where the origin of E is set at the conduction band edge E_c of Si, the middle of the bandgap of Si is indicated by "Mid gap", and E_F denotes the Fermi level of the Si substrate. The black, blue, and red circles are D_{it} in the capacitors with $t_{ox} = 0, 1$, and 3 min, respectively.

6. Conclusion

We have achieved the spin tunneling efficiency $\eta = P_{\rm S}/P_{\rm FM}$ value of 0.93, which is the highest ever reported by lowering $D_{\rm it}$ at the insulator/Si interface with the SiO_x (x ~2) insertion layer. The η obtained in this study is nearly ideal in the junctions using an amorphous insulator layer, *i.e.*, without the spin filter effect.

Acknowledgements

This work was partially supported by Grants-in-Aid for Scientific Research, CREST of JST, Yazaki Science and Technology Foundation, and Spintronics Research Network of Japan.

References

- T. Tahara, H. Koike, M. Kameno, S. Sasaki, Y. Ando, K. Tanaka, S. Miwa, Y. Suzuki, and M. Shiraishi, Appl. Phys. Express 8, 113004 (2015).
- [2] A. Tiwari, T. Inokuchi, M. Ishikawa, H. Sugiyama, N. Tezuka, and Y. Saito, Jpn. J. Appl. Phys. 56, 04CD05 (2017).
- [3] S. Sato, R. Nakane, T. Hada, and M. Tanaka, Phys Rev. B 96, 235204 (2017).
- [4] E. H. Nicolian and J. R. Brews, MOS Physics and Technology, John Wiley & Sons, New York, 1982.