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Abstract 

The merit of dot-vector product implementations us-

ing (non-volatile) memory fabrics for more efficient ma-

chine learning needs to be evaluated at system level. We 

demonstrate the use of MRAM based cells for in-place bi-

nary multiplication with limited accuracy loss at the sys-

tem-level of 1.4% for MNIST and <10% for CIFAR-10.  

 

1. Introduction 

GPUs are the dominant architecture for deep learning ap-

plications today. They offer an extremely high performance 

thanks to their parallel architecture that is well matched to 

typical convolutional neural networks (CNN), yet they are 

also very power hungry. To further increase machine learning 

efficiency, dedicated hardware accelerators are either added 

to general purpose multi-processor architectures or imple-

mented as stand-alone ASICs. In this paper, we investigate a 

possible role for even more energy efficient solutions based 

on the use of memory fabrics for implementing the core com-

putations of neural networks. 

 

2. Deep neural networks 

Deep neural networks typically contain multiple convolu-

tional layers followed by a few dense layers. In the convolu-

tional layers, filter kernels are convolved with input tensors, 

leading to a large level of re-use for the weights of the filters. 

The dense (fully-connected) layers, in contrast, have lower 

computational intensity with limited opportunities for data re-

use. The dot product (weighted sum) is generally used both 

for dense layers and convolution layers and has been the core 

focus of prior art using non-volatile memory (NVM) technol-

ogies by leveraging their conceptual similarity with synaptic 

weights [1, 2, 3]. 

 

3. Implementing convolutions using memory elements 

When using NVM for NN implementations, multi-level 

NVM feature obstacles such as high programming energy or 

variability, whereas stochastic binary NVM may require re-

dundancy to ensure functionality [4]. Adaptation of NVM for 

NN implementations has a fundamental requirement: the ef-

ficiency improvement should be visible at the system level 

(from input raw data to classification output) instead of being 

restricted to a specific operation. Most approaches in the 

novel NVM technology trend, attempt to emulate the synaptic 

weight with memristor-like elements. We can sub-categorize 

this domain with respect to the number of NVM levels that 

are assumed. In the case of multi-level NVM, we come across 

technologies like TaOx-based memristors [1] and Phase-

Change Memory (PCM) [2]. In both cases, the NVMs are as-

sumed to hold the weight value. Voltage pulses are fed to the 

rows of the NVM array and the weighted currents are even-

tually summed at the bottom of each column. Despite at-

tempts to optimize the mapping of the scalar weights on the 

inherently variable NVMs [1], a fundamental requirement for 

analog-to-digital conversion arises when that dot-product 

needs to be sensed out of the NVM array. This may be a lim-

iting factor when interfacing with traditional CMOS logic, 

raising a major concern for the compatibility of these circuits 

with established architectures. Conversely, when NVM ele-

ments are treated as binary weights, multiple binary NVM el-

ements are required to emulate a scalar synaptic weight [3], 

with the associated area and energy overheads. 

 

3. Binary Neural Network using MRAM array 

Based on the above considerations, we use STT-MRAM 

to implement an in-place multiplication that can be used for 

binary neural networks (BNN). We show how this concept 

needs to be used in different forms to suit different system 

contexts.  

NVM Cell design 

The dot-product is generally dominant in MLP/CNN data 

flows. Considering BNN [5], we propose multiplication be-

tween a binary activation and a binary weight using the cell 

show in Fig. 1, together with its logic description.  

 

 
Fig. 1 The 2T-2MTJ cell and its truth table 

 

In this illustration, we assume STT-MRAM as the binary 

NVM technology of choice, however any NVM with two 

clearly distinguishable resistive states (high resistive state – 

HRS, and low resistive state – LRS) is also applicable. The 

proposed binary multiplication cell leverages the equivalence 

between the numerical values of the BNN software assump-

tions (-1/+1), the logical values of digital logic (0/1), the re-

sistance values of the NVMs (LRS/HRS) and the angle of the 

(out-of-plane) magnetization of the STT-MRAM's free layer. 

The two NVMs of the proposed cell hold the binary weight 
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value and its complement. The gate nodes of the two nFETs 

are pulsed according to the activation value and its comple-

ment. The XNOR (or multiplication) output appears in the 

sense node of the voltage divider as a half-swing readout volt-

age. For the latter value to be used in further digital logic, it 

must be sensed and translated to an equivalent full-swing 

voltage. This is a requirement that already exists in MRAM 

(and generally embedded memory) arrays and can be met us-

ing a simple sense amplifier (SA). 

 

NVM array and system consideration 

The binary product can be read out of an array that holds 

weight values in NVM elements. Overall, NN layers are en-

visioned as a data flow occupying different XNOR cell arrays, 

each layer followed by normalization and non-linearity layers 

as shown in Fig. 2. Assuming a densely connected layer re-

ceiving input activations from N neurons and being com-

posed of M neurons, we can store all related binary weights 

in a NxM XNOR cell array. Each dense/convolution addend 

is created by signaling the appropriate word line. A pop-coun-

ter is needed to implement the sideways sum of the +1 or -1 

addends: Starting from an initial value of 0, it increments if 

the read-out value is +1 or decrements if the read-out value is 

-1. Once the outputs of all XNOR cells of a column have been 

read out and counted, the pop-counter will contain the final 

value (signed integer) corresponding to that column.  

 
Fig. 2 System view including normalization and non-linearity layers. 

 

With BNN assumptions, the data type of the dot-product 

output opens an interesting space for the optimization of the 

normalization and non-linearity operations that typically fol-

low a dense or convolutional layer. Typical floating-point 

representations can be simplified to integer or even Boolean. 

The accuracy implications of these data-type refinements 

(DTR) are verified on the full test sets of the MNIST [6] and 

CIFAR10 [7] benchmarks. 

Input representation 

For BNN, inputs need to be recast to the (-1,+1) range. 

For MNIST input values can be directly binarized (see Fig. 

3). However, for CIFAR input pixels have a wide range of 

values, so direct binarization would incur large errors. Instead 

we use a binary representation with Q bits for each pixel and 

use these Q bits as separate inputs to the NN. 

 

4. Benchmarking 

   Accuracy is reported on the test set of each benchmark, 

without cropping/augmentation, assuming end-to-end binary 

weights/activations and the proposed DTRs. Fig. 3 shows 

MNIST accuracy for 3 hidden layers and different numbers 

of neurons (N) per hidden layer. The reference MLP [5] pro-

vides default accuracy, where inputs to the NN receive values 

in the (-1, +1) interval and normalization data structures re-

tain float precision. Input binarization and DTR lead, on av-

erage, to less than 1.4% accuracy degradation for the same 

MLP topologies. For the CNN running CIFAR10 we sweep 

pixel quantization (Q). Default (reference) accuracy is de-

rived from the public software binary CNN version [5], where 

inputs to the NN are not binarized (solid line in Fig. 3) and 

normalization parameters retain float precision. On average 

(across Q values), we observe less than 10% accuracy de-

crease due to DTR and input quantization. 

Fig. 3 MNIST and CIFAR 10 benchmark: input value histo-

grams (top) and accuracy assessment (bottom). 

 

5. Conclusions 

   In this work we discuss the enablement of NNs with 

NVMs, starting from Binary NNs. We opt for binary NVMs 

(STT-MRAMs) and design a cell for in-place multiplication 

using binary weights (stored in the NVM) and activations 

(pulsed as a word line). The proposed NVM cells perform an 

XNOR and can be organized with standard memory design 

practices. Data type refinement is applied to NN normaliza-

tion, reducing the overall digital complexity. These optimiza-

tions lead to competitive accuracy on MNIST and CIFAR10, 

enabling end-to-end binary, NVM-based NN designs. 
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