
Using (emerging) memories for machine learning hardware.

D. Verkest, D. Rodopoulos, B. Verhoef, A. Mallik, J. Constantin, P. Debacker, J. Stuijt1. R. Appeltans,

D. Garbin, A. Mocuta, G. S. Kar, A. Furnemont,

Imec, Kapeldreef 75, B-3001 Leuven, Belgium and 1Imec-NL, Eindhoven, The Netherlands

Phone: +32-16-281.211 E-mail: diederik.verkest@imec.be

Abstract

The merit of dot-vector product implementations us-

ing (non-volatile) memory fabrics for more efficient ma-

chine learning needs to be evaluated at system level. We

demonstrate the use of MRAM based cells for in-place bi-

nary multiplication with limited accuracy loss at the sys-

tem-level of 1.4% for MNIST and <10% for CIFAR-10.

1. Introduction

GPUs are the dominant architecture for deep learning ap-

plications today. They offer an extremely high performance

thanks to their parallel architecture that is well matched to

typical convolutional neural networks (CNN), yet they are

also very power hungry. To further increase machine learning

efficiency, dedicated hardware accelerators are either added

to general purpose multi-processor architectures or imple-

mented as stand-alone ASICs. In this paper, we investigate a

possible role for even more energy efficient solutions based

on the use of memory fabrics for implementing the core com-

putations of neural networks.

2. Deep neural networks

Deep neural networks typically contain multiple convolu-

tional layers followed by a few dense layers. In the convolu-

tional layers, filter kernels are convolved with input tensors,

leading to a large level of re-use for the weights of the filters.

The dense (fully-connected) layers, in contrast, have lower

computational intensity with limited opportunities for data re-

use. The dot product (weighted sum) is generally used both

for dense layers and convolution layers and has been the core

focus of prior art using non-volatile memory (NVM) technol-

ogies by leveraging their conceptual similarity with synaptic

weights [1, 2, 3].

3. Implementing convolutions using memory elements

When using NVM for NN implementations, multi-level

NVM feature obstacles such as high programming energy or

variability, whereas stochastic binary NVM may require re-

dundancy to ensure functionality [4]. Adaptation of NVM for

NN implementations has a fundamental requirement: the ef-

ficiency improvement should be visible at the system level

(from input raw data to classification output) instead of being

restricted to a specific operation. Most approaches in the

novel NVM technology trend, attempt to emulate the synaptic

weight with memristor-like elements. We can sub-categorize

this domain with respect to the number of NVM levels that

are assumed. In the case of multi-level NVM, we come across

technologies like TaOx-based memristors [1] and Phase-

Change Memory (PCM) [2]. In both cases, the NVMs are as-

sumed to hold the weight value. Voltage pulses are fed to the

rows of the NVM array and the weighted currents are even-

tually summed at the bottom of each column. Despite at-

tempts to optimize the mapping of the scalar weights on the

inherently variable NVMs [1], a fundamental requirement for

analog-to-digital conversion arises when that dot-product

needs to be sensed out of the NVM array. This may be a lim-

iting factor when interfacing with traditional CMOS logic,

raising a major concern for the compatibility of these circuits

with established architectures. Conversely, when NVM ele-

ments are treated as binary weights, multiple binary NVM el-

ements are required to emulate a scalar synaptic weight [3],

with the associated area and energy overheads.

3. Binary Neural Network using MRAM array

Based on the above considerations, we use STT-MRAM

to implement an in-place multiplication that can be used for

binary neural networks (BNN). We show how this concept

needs to be used in different forms to suit different system

contexts.

NVM Cell design

The dot-product is generally dominant in MLP/CNN data

flows. Considering BNN [5], we propose multiplication be-

tween a binary activation and a binary weight using the cell

show in Fig. 1, together with its logic description.

Fig. 1 The 2T-2MTJ cell and its truth table

In this illustration, we assume STT-MRAM as the binary

NVM technology of choice, however any NVM with two

clearly distinguishable resistive states (high resistive state –

HRS, and low resistive state – LRS) is also applicable. The

proposed binary multiplication cell leverages the equivalence

between the numerical values of the BNN software assump-

tions (-1/+1), the logical values of digital logic (0/1), the re-

sistance values of the NVMs (LRS/HRS) and the angle of the

(out-of-plane) magnetization of the STT-MRAM's free layer.

The two NVMs of the proposed cell hold the binary weight

 A-2-03 (Invited) Extended Abstracts of the 2018 International Conference on Solid State Devices and Materials, Tokyo, 2018, pp21-22

- 21 -

value and its complement. The gate nodes of the two nFETs

are pulsed according to the activation value and its comple-

ment. The XNOR (or multiplication) output appears in the

sense node of the voltage divider as a half-swing readout volt-

age. For the latter value to be used in further digital logic, it

must be sensed and translated to an equivalent full-swing

voltage. This is a requirement that already exists in MRAM

(and generally embedded memory) arrays and can be met us-

ing a simple sense amplifier (SA).

NVM array and system consideration

The binary product can be read out of an array that holds

weight values in NVM elements. Overall, NN layers are en-

visioned as a data flow occupying different XNOR cell arrays,

each layer followed by normalization and non-linearity layers

as shown in Fig. 2. Assuming a densely connected layer re-

ceiving input activations from N neurons and being com-

posed of M neurons, we can store all related binary weights

in a NxM XNOR cell array. Each dense/convolution addend

is created by signaling the appropriate word line. A pop-coun-

ter is needed to implement the sideways sum of the +1 or -1

addends: Starting from an initial value of 0, it increments if

the read-out value is +1 or decrements if the read-out value is

-1. Once the outputs of all XNOR cells of a column have been

read out and counted, the pop-counter will contain the final

value (signed integer) corresponding to that column.

Fig. 2 System view including normalization and non-linearity layers.

With BNN assumptions, the data type of the dot-product

output opens an interesting space for the optimization of the

normalization and non-linearity operations that typically fol-

low a dense or convolutional layer. Typical floating-point

representations can be simplified to integer or even Boolean.

The accuracy implications of these data-type refinements

(DTR) are verified on the full test sets of the MNIST [6] and

CIFAR10 [7] benchmarks.

Input representation

For BNN, inputs need to be recast to the (-1,+1) range.

For MNIST input values can be directly binarized (see Fig.

3). However, for CIFAR input pixels have a wide range of

values, so direct binarization would incur large errors. Instead

we use a binary representation with Q bits for each pixel and

use these Q bits as separate inputs to the NN.

4. Benchmarking

 Accuracy is reported on the test set of each benchmark,

without cropping/augmentation, assuming end-to-end binary

weights/activations and the proposed DTRs. Fig. 3 shows

MNIST accuracy for 3 hidden layers and different numbers

of neurons (N) per hidden layer. The reference MLP [5] pro-

vides default accuracy, where inputs to the NN receive values

in the (-1, +1) interval and normalization data structures re-

tain float precision. Input binarization and DTR lead, on av-

erage, to less than 1.4% accuracy degradation for the same

MLP topologies. For the CNN running CIFAR10 we sweep

pixel quantization (Q). Default (reference) accuracy is de-

rived from the public software binary CNN version [5], where

inputs to the NN are not binarized (solid line in Fig. 3) and

normalization parameters retain float precision. On average

(across Q values), we observe less than 10% accuracy de-

crease due to DTR and input quantization.

Fig. 3 MNIST and CIFAR 10 benchmark: input value histo-

grams (top) and accuracy assessment (bottom).

5. Conclusions

 In this work we discuss the enablement of NNs with

NVMs, starting from Binary NNs. We opt for binary NVMs

(STT-MRAMs) and design a cell for in-place multiplication

using binary weights (stored in the NVM) and activations

(pulsed as a word line). The proposed NVM cells perform an

XNOR and can be organized with standard memory design

practices. Data type refinement is applied to NN normaliza-

tion, reducing the overall digital complexity. These optimiza-

tions lead to competitive accuracy on MNIST and CIFAR10,

enabling end-to-end binary, NVM-based NN designs.

Acknowledgements
 This research or part of this research is conducted within the

imec “Machine Learning” IIAP.

References

[1] M. Hu et al., Proc. of DAC, (2016).

[2] G.W. Burr et al. IEEE TED, 62(11):3498-3507, 2015

[3]. D. Garbin et al, IEEE TED, 62(8), 2015.

[4] D. Querlioz et al., Proc. of the IEEE, 103(8)1398-1416, 2015.

[5] M. Courbariaux, CoRR, abs/1602.02830, 2016.

[6] Y. Lecun et al., http://yann.lecun.com/exdb/mnist/.

[7] A. Krizhevsky, Learning multiple layers of features from tiny

images, Tech. Rep. Univ of Toronto, 2009

- 22 -

http://yann.lecun.com/exdb/mnist/

