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Abstract: An MTJ-based nonvolatile logic-in-memory 
(NV-LIM) architecture for binarized neural networks 
(BNNs) is proposed. NV-LIM-based BNN has a capability 
of reducing both computational cost and data transfer 
cost related to the inference function of deep neural net-
works. Through an experimental evaluation of a basic 
component of BNN hardware designed with NV-LIM ar-
chitecture, we demonstrate its impact on the power, delay 
and area overhead reduction. 

1. Introduction 
Binarization [1] is attracting attention to adopt brain-in-

spired computing for applications with limited hardware cost, 
such as IoT sensor nodes and mobile devices. This is to real-
ize highly efficient hardware implementation by replacing the 
operation conventionally performed using fixed- or floating 
representation of several bits in convolutional neural net-
works (CNNs) to binary operation. Various papers have re-
ported that sufficient performance can be obtained even if the 
operations are binarized. 

We have shown the effectiveness of MTJ-based nonvola-
tile logic-in-memory (NV-LIM) architecture, which merges 
MTJ devices [2] as nonvolatile memories (NVMs) with a 
logic circuit by exploiting their three-dimensional stackabil-
ity and CMOS compatibility [3,4]. In this paper, we describe 
the application of NV-LIM gates for the implementation of 
compact, low power, and high performance binarized neural 
networks (BNNs). Through an experimental evaluation of an 
NV-LIM gate designed using a 40-nm CMOS process tech-
nology, we consider the impact of NV-LIM architecture on 
the hardware implementation of BNNs. 

2. Binarized Neural Networks 
Figure 1 shows one of the well-known CNN structure 

called LeNet [5], as well as the difference between convolu-
tion operations in a conventional neural network and bina-
rized one. The structure of CNN can be roughly divided into 
convolution layers and full-connection layers, where multi-
ply-and-accumulate (MAC) operations occupy a large part of 
the calculation contents in any of the layers. In BNN, these 
operations can be replaced by exclusive NOR (XNOR) oper-
ations and bitcount operations, which is the basic principle of 
reduction of computational cost by binarization. 

Figure 2 shows a comparison of the hardware structure of 
the MAC operation in several architectures. Multipliers and 
adders can be replaced by smaller logic/arithmetic circuits by 
binarization, which greatly reduces the hardware cost. In 
addition, by holding input values corresponding to the weight 
coefficients of a neural network in NVMs connected to the 
inputs of logic gates, it is possible to reduce the power and 
delay associated with the memory access. Furthermore, by 
fusing a logic gate (XNOR gate) and an NVM in NV-LIM 

style, it is possible to improve its performance further as well 
as reduce area and power overhead. 

Table 1 shows how the operation counts in LeNet change 
depending on the network structure. Here we assume that the 
input values and the weight coefficients are represented by 8-
bit fixed representation in a conventional configuration. It is 
necessary to perform an extremely large number of 8x8-bit 
multiplications and 8-bit additions in the conventional con-
figuration, whereas most of them are replaced with 1-bit 2-
input XNOR operations and bitcount operations by binariza-
tion. In addition, by applying NV-LIM technology, the data 
transfer from memory can also be eliminated. This evaluation 
suggests that the XNOR operation is one of the most im-
portant operations in BNN, and its implementation with 
highly efficient hardware is expected to greatly contribute to 
the improvement of the overall performance of BNN hard-
ware. From this viewpoint, we introduce NV-LIM XNOR 
gate as a candidate for this purpose in the next section.  

3. MTJ-based NV-LIM XNOR Gate and Its Evaluation 
Figure 3 shows a circuit diagram of the NV-LIM XNOR 

gate, consisting of PCSA [6], XNOR logic tree, and MTJ de-
vices as a 1-bit memory. Two MTJ devices take a comple-
mentary state and hold the logical value 0 or 1 in a nonvolatile 
manner. By performing dynamic operation taking two phases 
of pre-charge and evaluate, high-speed logic operation and 
low power consumption can be simultaneously realized. 

We designed this circuit by using a design flow developed 
by our research group with a hybrid process of 40-nm CMOS 
and MTJ devices. The resistance values of the MTJ devices 
were set to RP = 8 [kΩ] and RAP = 16 [kΩ]. Figure 4 shows 
the simulated waveform of this circuit. We can confirm that 
both XNOR operations with the stored value in the MTJ de-
vice and the input value, and a write operation to the MTJ 
devices are performed correctly.  

Table 2 shows the comparison of the power, delay, and 
area of the three types of configurations: a multiplier used in 
the conventional CNN, a configuration in which an XNOR 
gate and a memory are separately arranged, and an NV-LIM 
configuration. By replacing the multiplier with an XNOR 
gate by binarization, it is possible to reduce power, delay, and 
area greatly, and it can also be confirmed that the NV-LIM 
configuration further improves the performance. This result 
suggests that high speed and low power neural network hard-
ware can be compactly implemented by adopting NV-LIM 
XNOR as a basic component of BNN. 

4. Conclusion 
In this paper, we examined the effectiveness of NV-LIM 

gate for BNN through a performance evaluation of one of the 
main components, XNOR gate. As a prospect, we will con-
sider the effectiveness of NV-LIM in other components such 
as bitcount, and evaluate the overall impact to BNN. 
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Fig. 1 Typical structure of CNN and the difference between con-
volution operations. 
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Fig. 3 MTJ-based NV-LIM XNOR gate.
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Fig. 4 Simulated waveform. 

Table. 1 Operations counts on each network structure.

Full-connection CNN BNN BNN+NV-LIM
8x8-bit mult. 10920 94 (-99.1%) 94
8-bit add 10826 0 (-100.0%) 0
8-bit data trans. 10920 0 (-100.0%) 0
1-bit data trans. 0 10920 0 (-100.0%)
XNOR 0 10920 10920
bitcount (84 bit) 0 84 84
bitcount (120 bit) 0 10 10

Convolution CNN BNN BNN+NV-LIM
8x8-bit mult. 328365 18948 (-94.2%) 18948
8-bit add 320520 4800 (-98.5%) 4800
8-bit data trans. 326640 0 (-100.0%) 0
1-bit data trans. 0 326640 0 (-100.0%)
XNOR 0 326640 326640
bitcount (25bit) 0 12624 12624

Fig. 2 Comparison of the hardware structure of the MAC opera-
tion in several architectures. 

Table. 2 Performance comparison.

Power [W] Delay [s] PDP [W・s]
Area 

[a.u.]††

8x8 Multiplier† 1.57×10-5 4.29×10-10 6.74×10-14 8259.7

CMOS XNOR  
+ NVM

2.88×10-7 1.70×10-10 4.88×10-17 127.5

NV-LIM 2.15×10-7 1.69×10-10 3.64×10-17 86.5

† Power/delay cost related to the data transfer is not included.
†† The size of a transistor with minimum width/length is set to 1.
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