A Study of Impact of Incorporating Locations of Yttrium on the Properties of GeO_x/HfO₂-based/TiN Gate Stack Based on Material Reaction

Chen-Han Chou¹, Yu-Hong Lu¹, Yi-He Tsai², An-Shih Shih¹, Wen-Kuan Yeh³ and Chao-Hsin Chien^{1*}

¹Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan

²Nanotechnology Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan

³National Nano Device Laboratories, Hsinchu, Taiwan

*E-mail: chchien@faculty.nctu.edu.tw, Tel: +886-3-571-2121 ext. 54252

Abstract

In this paper, an influence of incorporating location of Yttrium (Y) into GeO_x interfacial layer (IL) with HfO₂-based/TiN gate stack on p-Ge was studied. Various incorporating Y processes presented contrasting electrical and material results. Depositing Y metal before IL formation improved interface quality, however, degraded the dielectric constant (κ) of the HfO₂. We found non-fully oxidized Y atoms would capture nearby O atoms in Ge-O and/or Hf-O bonds, which depended on the position of Y. A series of XPS analyses indicated that Y doped GeO_x (YGO) induced Hf-N bonds in HfO₂ with N₂ plasma treatment, which degraded the κ of HfO₂.

1. Introduction

For further scaling MOSFET, Ge is one of high-mobility materials for enhancing the device on current. However, an essential challenge for Ge devices is how to form a high-quality interfacial layer (IL) on Ge. C. Lu *et al.* proposed a potential solution to solve the interface issue by doping Yttrium (Y) into GeO₂ (YGO) [1]. Based on the values of Gibbs free energy in Table I, Y-O bonds are more stable than Hf-O and Ge-O bonds. In fact, adding stable Y-O bonds into GeO_x benefits to improve thermal stability of IL and its quality [2]. However, the influence of YGO IL for HfO₂-based/TiN gate stack should be discussed in detail. In this paper, we demonstrated various processing conditions of incorporating Y into GeO_x ILs and presented a series of material analyses to deeply realize the material interaction as various processes.

2. Device Preparation

Fig. 1 shows the process flow and structures of p-Ge capacitors for various ILs processes of Y incorporation. Standard IL process used oxygen plasma oxidation (PO) for GeO_x formation [3]. Y-first/PO IL was formed by depositing a 0.6 nm Y metal followed by PO. PO/Y-later IL was formed by depositing a 0.6 nm Y after PO. High- κ layers were grown by PEALD and TiN metal was deposited by sputtering Ti with N₂ plasma.

3. Results and Discussion

In Fig. 2, equivalent oxide thickness (EOT) and interface trap density (D_{it}) of various ILs are shown. We found Y-first/PO case possessed lower D_{it} (4.9 × 10¹¹ eV⁻¹cm⁻²) and higher EOT (1.9 nm) values than those in PO/Y-later case. Surprisingly, the PO/Y-later case showed the highest D_{it} value. Fig. 3 shows the corresponding TEM images and

EDX depth profiles. In fact, the IL of Y-first/PO case was only slightly thicker than the others. However, the EOT value was significantly degraded. The extracted dielectric constant (κ) of the HfO₂-based layers of Y-first/PO case was 10 only. For further investigating the difference between Y-first/PO and PO/Y-later cases, a simple test structures with various ILs under a 1 nm HfO₂ layer through a PDA of 500 °C were used for XPS analysis (Fig. 4(a)). Corresponding XPS spectra of O 1s and oxide composition are shown in Fig. 4. XPS spectra of Hf 4f and O/Hf atomic ratio are shown in Fig. 5. We found the peak of Hf 4f of Y-first/PO case was located at lower binding energy, which means the amount of Hf-O bonds in the HfO2 of Y-first/PO case was less. We, thus, concluded that Y-first/PO case had more Y-O bonds than PO/Y-later case, however, which had a lower O/Hf atomic ratio \sim 1.403. This means pre-depositing Y followed by PO can form more Y-O bonds, nevertheless, the formation of stable Y-O bonds in the GeO_x layer might rob the O atoms from upper HfO₂ layer. Next, we transferred the test structures through a N2 plasma treatment of TiN deposition. The XPS results of Hf 4f are shown in Fig. 6, indicating the Y-first/PO case had more Hf-N bonds formed by N₂ plasma treatment. This phenomenon was consistent with our EDX results, which showed N pile-up near IL. Postulated material interaction models were proposed in Fig. 7. Pre-depositing Y before IL oxidation resulted in more Y-O bonds in IL, and then, if Y atoms were not fully oxidized, they would rob the nearby O atoms from the HfO₂ layer and induce oxygen vacancies in HfO2. The oxygen vacancies would be filled by N atoms to form Hf-N bonds after N₂ plasma treatment. To further confirm the relation between Hf-N bonds and κ degradation, a pure Ti metal was used to substitute TiN metal of capacitors. Actually, we did observe the κ degradation of HfO₂ could be significantly improved.

3. Conclusions

In summary, the influence of incorporating Y into IL with HfO₂-based/TiN gate stack was investigated. Doping Y into IL could improve interface quality; however, it also induced oxygen vacancies in HfO₂ and indirectly formed Hf-N bonds as TiN deposition, which degraded the κ of HfO₂. If incorporating Y after the GeO_x formation, non-fully oxidized Y atoms would rob the O atoms of IL and further degrade the interface quality.

References

C. Lu et al., VLSI, (2015) T18.
C. H. Chou et al., JSSST (2018), No.2.
Y. H. Tsai et al., EDL (2016), No. 37, 1379.

Acknowledgements

This study was supported by the Ministry of Science&Technology under NCTU-UC Berkeley I-RiCE program, MOST-106-2911-I-009-301.

Table I. Free Gibbs Energy values of thermal dynamic for conventional oxides.

Oxide	Gibbs Free Energy (kJ/mol)
GeO ₂	-497.06
HfO ₂	-1027.17
Y ₂ O ₃	-1905.31

Cyclic DHF clean of p-Ge (100) bulk

Fig. 3. TEM images and EDX depth profiles for (a) Standard, (b) PO/Y-later and (c) Y-first/PO cases. Especially, N pile-up could be found in Y incorporation cases. The extracted κ of the HfO₂/AlO_x/HfO₂ stacks of standard and Y-first/PO cases were 15 and 10, respectively.

Fig. 5. XPS spectra of Hf 4f for Standard, PO/Y-later and Y-first/PO cases. Corresponding O/Hf atomic ratio was extracted by XPS spectra of Hf 4f and O 1s. Y-first/PO case had less Hf-O bonds and lowest O/Hf atomic ratio ~ 1.4 (O-less HfO₂).

Fig. 2. Corresponding D_{it} and EOT values for various IL cases. Y-first/PO method could suppress D_{it} value; however, PO/Y-later method presented the highest D_{it} value.

Fig. 4. XPS spectra of O *1s* for (a) Standard, (b) PO/Y-later and (c) Y-first/PO cases. (d) Oxide composition for various test structures. Y-first/PO case had more Y-O bonds than PO/Y-later case. Standard $+ N_2$ plasma

Fig. 6. Corresponding XPS spectra of Hf 4f for (a) Standard and (c) Y-first/PO case, (b) Standard and (d) Y-first/PO case through N_2 plasma treatment. The Y-first/PO case had more Hf-N bonds formed by N_2 plasma treatment. It means more oxygen vacancies were filled by N atoms in Y-first/PO case.

Fig. 7. Cartoons of the postulated sequential material interactions for Y-first/PO and PO/Y-later cases. (a) Pre-depositing Y before plasma oxidation was prone to make Y atoms located in IL. After HfO₂ deposition and PDA processes, non-fully oxidize Y atoms might rob the O atoms of upper HfO₂ and form oxygen vacancies in HfO₂. During a N₂ plasma treatment, Hf-N bonds were formed in HfO₂. (b) In the process of Y deposition after plasma oxidation, Y atoms oppositely located in HfO₂ layer. Hence, through a PDA process, Y atoms might rob the O atoms of under GeO_x layer. This mechanism would degrade the IL quality, even if through a N₂ plasma treatment.