Impact of "struggle for oxygen" at oxidized interface on SiGe gate stacks

Xiuyan Li, Yusuke Noma, Woojin Song, Tomonori Nishimura and Akira Toriumi

Department of Materials Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Phone: +81-3-5841-1907 E-mail: xiuyan@adam.t.u-tokyo.ac.jp

Abstract

This work discusses the impact of oxidation kinetics of SiGe on the interface degradation by paying attention to the reaction between GeO_2 and SiGe. Unlike in GeO_2/Ge , no reaction between GeO_2 and Ge occurs in $GeO_2/SiGe$ and at the oxidized SiGe interface. Insufficient oxygen passivation of Ge on Ge-rich SiGe surface, as a result of "struggle for oxygen" between Si and Ge in oxidation, may degrade the interface quality of SiGe gate stacks.

1. Introduction

High-Ge content SiGe pFETs are intensively under investigation for higher performance CMOS [1]. A most critical point is that the oxidation of SiGe is considerably different from that of Si or Ge: GeO_x is mixed in SiO₂ and Ge-rich layer is precipitated on SiGe surface, leading to a poor interface quality [2]. In GeO₂/Ge stack, the oxygen vacancy (V_o) generated by GeO₂/Ge reaction is responsible for the interface degradation [3]. This view has also been considered to explain the poor interface in SiGe gate stacks [4]. To shape well-behaved SiGe gate stacks, it is crucial to understand the interface reaction very correctly. Therefore, the objective of this work is to clarify what occurs at oxidized SiGe interface, and to discuss the intrinsic origin of the interface degradation in SiGe oxidation.

2. Experiments and results

The interface reactions between GeO₂ and SiGe was

studied by the thermal desorption spectroscopy (TDS) measurement. Two sets of samples were prepared. i) 9-nm-thick GeO₂ were deposited by sputtering on Ge(001), Si(001), SiO₂(100nm)/Si and Si_{0.6}Ge_{0.4}, and ii) SiGe was oxidized in 1atm O₂ at 650-750°C for 5-120 min.

(1) GeO desorption in GeO₂/SiGe, GeO₂/Si, GeO₂/Ge and GeO₂/SiO₂/Si

GeO desorption induced by the interface reaction in GeO₂/Ge was clearly observed at relatively low temperature as reported [3]. GeO desorption in GeO₂/SiGe, GeO₂/Si and GeO₂/SiO₂/Si stacks was inspected as shown in Fig. 1. No GeO desorption is observed from GeO2/SiGe at low temperature region (LT, 650°C). Instead, a GeO desorption peak appears at higher temperature (HT, 850°C). Interestingly, almost the same amount of GeO desorption at HT is observed from GeO₂/Si, but not from GeO₂/SiO₂. To understand what occurs in GeO2/SiGe reaction, XPS characterization was carried out at each processing step. Fig. 2 shows that SiO₂ is newly formed with GeO desorption, and that GeO₂ is reduced and SiGe surface becomes Ge-rich. These results strongly suggest that HT GeO desorption in GeO₂/SiGe does not result from the reaction between GeO₂ and Ge but from that between GeO2 and Si. Furthermore, note that the integrated GeO desorption intensity from GeO₂/SiGe at HT was slightly less than 50% of that from GeO_2/Ge at LT (GeO_2+Ge=2GeO[†]). It suggests the following reaction: 2GeO_2 +SiGe=2GeO \uparrow +SiO₂+Ge. Moreover, the remaining GeO₂ means that this reaction may automatically stop as the process proceeds.

Fig. 1 TDS results of GeO from GeO_2/Ge , GeO_2/Si , $GeO_2/SiGe$ and $GeO_2/SiO_2(100nm)/Si$. The same amount of GeO desorption is observed from both $GeO_2/SiGe$ and GeO_2/Si at about 850°C, which is different from that from GeO_2/Ge at about 650°C. No GeO desorption occurs from $GeO_2/SiO_2/Si$ stacks.

Fig. 2 XPS results of (a) GeO₂/SiGe stacks and (b) their SiGe surface (removing oxide by HF) before and after UHV annealing at 950° C. After UHV annealing, SiO₂ is newly formed, GeO₂ is reduced and SiGe surface becomes Ge rich.

(2) GeO desorption vs. Ge-rich layer formation in SiGe oxidation

Next, GeO desorption in thermally oxidized SiGe stacks was investigated. The structure of oxidized SiGe stacks has been understood that a mixed oxide of GeO_x with SiO₂, followed by a Ge-rich layer, were formed on SiGe surface by XPS [2] and Raman spectrum [5] in our previous work. In the present work, X-TEM image in **Fig. 3(a)** together with SIMS results (not shown) demonstrate that a Ge rich interfacial layer (IL) with a crystalline structure is formed on SiGe surface, and GeO_x is mixed with SiO₂ mainly near the oxide surface. **Fig. 3(b)** shows no GeO desorption observed at both *LT* and *HT* regions in oxidized SiGe samples with two different oxidation conditions.

Fig. 3 (a) X-TEM images of SiGe sample oxidized at 750°C for 2h. A Ge-rich interfacial layer is formed between SiGe and SiO₂-rich oxide, and GeO_x is mainly mixed near the oxide surface. **(b)** TDS results of SiGe samples oxidized at 650°C for 5min and 750°C for 2h. No GeO desorption is observed in both cases up to 950°C in UHV annealing.

3. Discussion

We recently found that Ge was oxidized mainly by GeO₂ rather than by O₂ molecular after the initial oxidation stage [6]. In case of SiGe, the activation energy of Ge oxidation by GeO₂ should be enhanced due to the higher bond energy of Si-Ge than Ge-Ge. Meanwhile, the reaction between GeO₂ and Si is thermodynamically more favorable than that between GeO₂ and Ge. Therefore, LT GeO₂-Ge reaction is unlikely to occur, instead, HT GeO2-Si reaction occurs in GeO₂/SiGe. Concerning kinetics of HT GeO desorption in Fig. 1, the same amount of GeO desorption in GeO₂/SiGe as in GeO₂/Si implies that this process is not in a reaction limit at the interface but in a diffusion limit in GeO₂. Since GeO desorption requires Vo diffusion from the interface to GeO2 surface [3], and it is well known that V_0 diffusion in SiO₂ is quite difficult [7], HT GeO desorption will be suppressed in GeO_2/SiO_2 case, as schematically shown in Fig. 4. This

view also explains why no GeO desorption is observed in thermally oxidized SiGe gate stacks.

Finally we would like to discuss why the interface is poor in spite of no reaction between GeO₂ and SiGe in thermally formed gate stacks. Generally speaking, Ge oxidation is kinetically quicker while Si one is thermodynamically more stable. In case of SiGe, Si oxidation may become easier while Ge become harder as indicated by reaction with GeO₂. Thus, Si is preferentially oxidized after the initial oxidation, and Ge is diffused into backward, forming Ge rich IL. This means the surface of Ge rich layer is not fully oxygen-terminated, and it is likely that oxide-SiGe interface has many Ge dangling bonds. Thus, in order to make good SiGe gate stacks, the oxidation of SiGe surface should be carefully minimized by using process and/or materials,

Fig. 5 Schematics of reaction and diffusion in GeO₂/SiGe in UHV annealing. The reaction at GeO₂/SiGe interface should be: SiGe=SiO₂ +2Vo+Ge. Generated V_O diffuses through GeO₂ and GeO desorbs from surface, while Ge diffuse into substrate with SiO₂ formation. The reaction is suppressed once certain amount of SiO₂ is formed as V_O diffusion in SiO₂ is quite hard.

4. Conclusion

No reaction of GeO₂ with Ge at low temperature but appreciable one of GeO₂ with Si in SiGe at high temperature have been observed in GeO₂/SiGe gate stacks. This reaction automatically stops in SiO₂ formation. Thus, in thermally oxidized samples, Ge-rich IL was formed between SiO₂-rich oxide and SiGe. Ge-rich IL resulted from the "struggle for oxygen" between Si and Ge at the interface is not fully O-terminated and should be the dominant origin of the interface states. In order to achieve well-behaved gate stacks, the surface oxidation of SiGe should be minimized.

Acknowledgment

This work was partly supported by JSPS Grant-in-Aid for Scientific Research (A).

References

- [1] R. Xie et al, Tech. Dig. IEDM(2016).
- [2] W. Song and A. Toriumi, JAP 122, 185301 (2017).
- [3] S. K. Wang *et al*, JAP **108**, 054104(2010).
- [4] C. H. Lee et al, Tech. Dig. VLSI (2016).
- [5] Y. Noma et al, Tech. Dig. EDTM (2018).
- [6] X. Wang et al, APL 111, 052101 (2017).
- [7] H. Li et al, APL 110, 222902(2017).